Putting \(x = \frac{1}{2}\) we have :
\(\begin{array}{l}\frac{{x + {x^2}}}{{{{(1 - x)}^3}}} = \sum\limits_{n = 1}^\infty {{n^2}{x^n}} \\\sum\limits_{n = 1}^\infty {{n^2}{{\left( {\frac{1}{2}} \right)}^n}} = \left[ {\frac{{\left( {\frac{1}{2}} \right) + {{\left( {\frac{1}{2}} \right)}^2}}}{{{{\left( {1 - \left( {\frac{1}{2}} \right)} \right)}^3}}}} \right]\end{array}\)\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}}}{{{2^n}}}} = \left[ {\frac{{\left( {\frac{1}{2}} \right) + \left( {\frac{1}{4}} \right)}}{{{{\left( {\frac{1}{2}} \right)}^3}}}} \right]\)\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}}}{{{2^n}}}} = \left[ {\frac{{\left( {\frac{3}{4}} \right)}}{{\left( {\frac{1}{8}} \right)}}} \right]\)\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}}}{{{2^n}}}} = \frac{{(3)(8)}}{{(4)(1)}}\)\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}}}{{{2^n}}}} = 6\)