Chapter 8: Q60RE (page 499)
If \({\rm{f(x) = }}{{\rm{e}}^{{{\rm{x}}^{\rm{2}}}}}\)show that \({{\rm{f}}^{{\rm{(2n)}}}}{\rm{(0) = }}\frac{{{\rm{(2n)!}}}}{{{\rm{n!}}}}\).
Short Answer
Hence, it is shown that\({f^{(2n)}}(0) = \frac{{(2n)!}}{{n!}}\).
Chapter 8: Q60RE (page 499)
If \({\rm{f(x) = }}{{\rm{e}}^{{{\rm{x}}^{\rm{2}}}}}\)show that \({{\rm{f}}^{{\rm{(2n)}}}}{\rm{(0) = }}\frac{{{\rm{(2n)!}}}}{{{\rm{n!}}}}\).
Hence, it is shown that\({f^{(2n)}}(0) = \frac{{(2n)!}}{{n!}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \ln \left( {2{n^2} + 1} \right) - \ln \left( {{n^2} + 1} \right)\)
(a)Show that if \(\mathop {\lim }\limits_{n \to \infty } {a_2}_n = L\)and \(\mathop {\lim }\limits_{n \to \infty } {a_{2n + 1}} = L,\) then {\({a_n}\)} is convergent and \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\).
(a) If \({a_1} = 1\) and
\({a_{n + 1}} = 1 + \frac{1}{{1 + {a_n}}}\)
Find the first eight terms of the sequence {\({a_n}\)}. Then use part(a) to show that \(\mathop {\lim }\limits_{n \to \infty } {a_n} = \sqrt 2 \). This gives the continued fraction expansion
\(\sqrt 2 = 1 + \frac{1}{{2 + \frac{1}{{2 + ...}}}}\)
Determine whether the series is convergent or divergent. If its convergent, find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{(n - 1)}}{{(3n - 1)}}} \)
Prove Theorem 6. (Hint: Use either definition 2 or the squeeze Theorem).
\(\sum\limits_{n = 1}^\infty {\arctan (n)} \) Find Whether It Is Convergent Or Divergent And Find Its Sum If It Is Convergent.
What do you think about this solution?
We value your feedback to improve our textbook solutions.