In the precise definition of a limit, we have
\(\mathop {\lim }\limits_{x \to \infty } f(x) = L\)
if for every number\(\varepsilon \)>0, there is some number N>0
such that
\(|f(x) - L| < {\rm{whenever }}x > N\)
Therefore, we have
\(\begin{array}{*{20}{r}}{\left| {\frac{{{n^4}}}{{{e^n}}} - 0} \right| < 0.1}\\{\left| {\frac{{{n^4}}}{{{e^n}}}} \right| < 0.1}\\{\left( {\frac{{{n^4}}}{{{e^n}}}} \right) < 0.1}\end{array}\)
whenever n>N
\(We\;plot\left( {\frac{{{n^4}}}{{{e^n}}}} \right)vs\;n\;in\;the\;given\;figure.\;And\;we\;find\;out\;that\;for\)
\(\left( {\frac{{{n^4}}}{{{e^n}}}} \right) < 0.1\quad {\rm{ for }}n > 12.36\)
And we find out that the smallest value of N that corresponds to\(\varepsilon \)=0.1 in the precise definition of a limit is
\(\begin{array}{l}N = 12.36\\N \ge 12.36\end{array}\)

The smallest value of N is
\(\mathop {\lim }\limits_{n \to \infty } \frac{{{n^4}}}{{{e^n}}} = 0.1\)
,where
\(N \ge 12.36\)