Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) A sequence is defines recursively by the equation \({a_n} = \frac{1}{2}\left( {{a_{n - 1}} + {a_{n - 2}}} \right)\)for \(n \ge 3\), where \({a_1}\)and \({a_2}\) can be any real numbers/ Experiment with various values of \({a_1}\)and \({a_2}\) and use your calculator to guess the limit of the sequence.

(b) Find \(\mathop {\lim }\limits_{n \to \infty } {a_n}\) in terms of \({a_1}\)and \({a_2}\)by expressing \({a_{n + 1}} - {a_n}\) in terms of \({a_2} - {a_1}\) and summing a series.

Short Answer

Expert verified

(a) The series may be tending towards\(\frac{2}{3}\).

(b) The value of summing a series is given by\(\sum\limits_{n = 1}^\infty {{d_n}} = \frac{2}{3}\left( {{a_2} - {a_1}} \right)\)

Step by step solution

01

Same values for \({a_1}\)and \({a_2}\)

Consider a sequence that satisfies the equation \({a_n} = \frac{1}{2}\left( {{a_{n - 1}} + {a_{n - 2}}} \right)\), and numbers \({a_1}\)and \({a_2}\).

Let’s experiment with some initial values by taking the values \({a_1} = 1\)and \({a_2} = 1\).

Rewriting the equation with these values

\( {a_1} = 1\)

\( {a_2} = 1\)

\( {a_3} = \frac{1}{2}\left( {1 + 1} \right)\)

\( {a_3} = 1\)

\( {a_4} = \frac{1}{2}\left( {1 + 1} \right)\)

\( {a_4} = 1\)

Since the next term is always the average of the previous two values, if we start with two equal values the sequence will always be constant.

02

Different values for \({a_1}\)and \({a_2}\)

Let’s experiment with some initial values by taking the values \({a_1} = 0\)and \({a_2} = 1\).

\({a_1} = 0\)

\({a_2} = 1\)

\( {a_3} = \frac{1}{2}\left( {0 + 1} \right)\)

\( {a_3} = \frac{1}{2}\)

\( {a_4} = \frac{1}{2}\left( {1 + \frac{1}{2}} \right)\)

\( {a_4} = \frac{3}{4}\)

\( {a_5} = \frac{1}{2}\left( {\frac{1}{2} + \frac{3}{4}} \right)\)

\( {a_5} = \frac{5}{8}\)

\( {a_6} = \frac{1}{2}\left( {\frac{5}{8} + \frac{3}{4}} \right)\)

\( {a_6} = \frac{{11}}{{16}}\)

\( {a_7} = \frac{1}{2}\left( {\frac{5}{8} + \frac{{11}}{{16}}} \right)\)

\( {a_7} = \frac{{21}}{{32}}\)

\( {a_8} = \frac{1}{2}\left( {\frac{{21}}{{32}} + \frac{{11}}{{16}}} \right)\)

\( {a_8} = \frac{{43}}{{64}}\)

\( {a_9} = \frac{1}{2}\left( {\frac{{43}}{{64}} + \frac{{21}}{{32}}} \right)\)

\( {a_9} = \frac{{85}}{{128}}\)

\( {a_{10}} = \frac{1}{2}\left( {\frac{{85}}{{128}} + \frac{{43}}{{64}}} \right)\)

\( {a_{10}} = \frac{{171}}{{256}}\)

\( {a_{11}} = \frac{1}{2}\left( {\frac{{85}}{{128}} + \frac{{171}}{{256}}} \right)\)

\({a_{11}} = \frac{{341}}{{512}}\)

Hence,\({a_{11}}\) is equal to the value\(0.66601...,\)approximately.

And, previous values are near this so it will appear that the series may be tending towards\(\frac{2}{3}\).

03

Calculate the value of \(\mathop {\lim }\limits_{n \to \infty } {a_n}\)

Let \({d_n} = {a_{n + 1}} - {a_n}\) and \({s_n}\) be the partial sum of \({d_n}\).

\({s_n} = {a_2} - {a_1} + {a_3} - {a_2} + {a_4} - {a_3} + ...... + {a_{n + 1}} - {a_n}\)

\({s_n} = {a_{n + 1}} - {a_1}\)

And, the summation is given by

\(\sum\limits_{n = 1}^\infty {{d_n}} = \mathop {\lim }\limits_{n \to \infty } {s_n}\)

\( = \mathop {\lim }\limits_{n \to \infty } {a_{n + 1}} - {a_1}\)

This tells us that\(\mathop {\lim }\limits_{n \to \infty } {a_n} = {a_1} + \sum\limits_{n = 1}^\infty {{d_n}} \)

Here, we need to find a formula \(\sum\limits_{n = 1}^\infty {{d_n}} \)

\({a_{n + 1}} - {a_n} = \frac{1}{2}\left( {{a_n} + {a_{n - 1}}} \right) - \frac{1}{2}\left( {{a_{n - 1}} + {a_{n - 2}}} \right)\)

\( = \frac{1}{2}\left( {{a_n} - {a_{n - 2}}} \right)\)

\( = \frac{1}{2}\left( {\frac{1}{2}\left( {{a_{n - 1}} + {a_{n - 2}}} \right) - {a_{n - 2}}} \right)\)

\( = \frac{1}{2}\left( {\frac{1}{2}{a_{n - 1}} - \frac{1}{2}{a_{n - 2}}} \right)\)

\( = \frac{1}{4}\left( {{a_{n - 1}} - {a_{n - 2}}} \right)\)

\({d_n} = \frac{1}{4}{d_{n - 2}}\)

We can get all values in terms of \({d_1}\) and \({d_2}\).

\(\sum\limits_{n = 1}^\infty {{d_n}} = {d_1} + {d_2} + {d_3} + {d_4} + {d_5} + {d_6} + {d_7} + ....\)

\(= {d_1} + {d_2} + \frac{1}{4}{d_1} + \frac{1}{4}{d_2} + \frac{1}{4}\left( {\frac{1}{4}{d_1}} \right) + \frac{1}{4}\left( {\frac{1}{4}{d_2}} \right) + ....\)

\( = {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1} + {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_2}\)

Here, we have tobreak the series into two convergent seriesbecause

\({\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1}\) and \({\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_2}\) are convergent geometric series.

So, their sum \({\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1} + {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_2} = {d_1} + {d_2} + \frac{1}{4}{d_1} + \frac{1}{4}{d_2} + \frac{1}{4}\left( {\frac{1}{4}{d_1}} \right) + \frac{1}{4}\left( {\frac{1}{4}{d_2}} \right) + ....\) is

convergent and \({\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1} + {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_2} = {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1} + {\left( {\frac{1}{4}} \right)^{n - 1}}{d_2}\)

Thus,

\({\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_1} + {\sum\limits_{n = 1}^\infty {\left( {\frac{1}{4}} \right)} ^{n - 1}}{d_2} = \frac{{{d_1}}}{{1 - \left( {\frac{1}{4}} \right)}} + \frac{{{d_2}}}{{1 - \left( {\frac{1}{4}} \right)}}\)

\( \Rightarrow \frac{4}{3}\left( {{d_1} + {d_2}} \right)\)

04

Substitute the values of and

We have the values of d1 = a2 --a1and d2=a3-a2

\( = \frac{4}{3}\left( {{a_2} - {a_1} + {a_3} - {a_2}} \right)\)

\( = \frac{4}{3}\left( {{a_3} - {a_1}} \right)\)

\( = \frac{4}{3}\left( {\frac{1}{2}({a_1} + {a_2}) - {a_1}} \right)\)

\( = \frac{2}{3}\left( {{a_2} - {a_1}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free