Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A sequence is defined recursively by the equations \({{\rm{a}}_{\rm{1}}}{\rm{ = 1}}\),\({{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{{\rm{a}}_{\rm{n}}}{\rm{ + 4}}} \right)\)Show that \(\left\{ {{{\rm{a}}_{\rm{n}}}} \right\}\)is increasing and \({{\rm{a}}_{\rm{n}}}{\rm{ < 2}}\), for all n, Deduce that \(\left\{ {{{\rm{a}}_{\rm{n}}}} \right\}\)is convergent and find its limit.

Short Answer

Expert verified

Sequence\(\left\{ {{a_n}} \right\}\)is increasing and\({a_n} < 2\)for all\(n\)

The limit of sequence \(\left\{ {{a_n}} \right\},L = 2\)

Step by step solution

01

Definition of convergent

In mathematics, the property of approaching a limit more and more closely as an argument (variable) of the function grows or decreases, or as the number of terms in the series increases (as shown by some infinite series and functions).

02

Calculating hypothesis n.

Consider the given values and simplify,

\({{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{{\rm{a}}_{\rm{n}}}{\rm{ + 4}}} \right)\)

Let us assume that \(\left\{ {{a_n}} \right\}\)is increasing and \({{\rm{a}}_{\rm{n}}}{\rm{ < 2}}\), then

\({{\rm{a}}_{{\rm{n - 1}}}}{\rm{ < }}{{\rm{a}}_{\rm{n}}}{\rm{ < 2}}\)

We will use mathematical induction method to prove the results.

If \({\rm{n = 2}}\), we have

\(\begin{array}{c}{{\rm{a}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{{\rm{a}}_{\rm{1}}}{\rm{ + 4}}} \right)\\{{\rm{a}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{(1 + 4)}}\\{{\rm{a}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{5}}}{{\rm{3}}}\\{{\rm{a}}_{\rm{2}}}{\rm{ < 2}}\\{\rm{ = > 1 < }}{{\rm{a}}_{\rm{2}}}{\rm{ < 2}}\\{\rm{ = > }}{{\rm{a}}_{\rm{1}}}{\rm{ < }}{{\rm{a}}_{\rm{2}}}{\rm{ < 2}}\\\end{array}\)

Therefore, our hypothesis holds for \({\rm{n = 2}}\).

03

Testing hypothesis for n = (k+1).

Now, for \(n = k\), we have

\({{\rm{a}}_{{\rm{k - 1}}}}{\rm{ < }}{{\rm{a}}_{\rm{k}}}{\rm{ < 2}}\)

Now, we test our hypothesis for \({\rm{n = }}\left( {{\rm{k + 1}}} \right)\). Therefore, we have

\(\begin{array}{c}{{\rm{a}}_{{\rm{k + 1}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{{\rm{a}}_{\rm{k}}}{\rm{ + 4}}} \right)\\{{\rm{a}}_{{\rm{k + 1}}}}{\rm{ < }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{(2 + 4)}}\\{{\rm{a}}_{{\rm{k + 1}}}}{\rm{ < }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{(6)}}\\{{\rm{a}}_{{\rm{k + 1}}}}{\rm{ < 2}}\\{\rm{ = > }}{{\rm{a}}_{\rm{k}}}{\rm{ < }}{{\rm{a}}_{{\rm{k + 1}}}}{\rm{ < 2}}\end{array}\)

Our hypothesis holds for \({\rm{n = 1, k}}\) and \({\rm{k + 1}}\). Therefore, our hypothesis is proved to be true by mathematical induction.

Hence, \(\left\{ {{a_n}} \right\}\) is increasing.

And \({{\rm{a}}_{\rm{n}}}{\rm{ < 2}}\) for all \(n\).

04

Finding whether \({\rm{\{ }}{{\rm{a}}_{\rm{n}}}{\rm{\} }}\) is convergent.

As we have \(1 \le {a_n} < 2\) for all \(n\), therefore any sequence \(\left\{ {{a_n}} \right\}\) will not diverge hence converge.

The limit of the sequence \(\left\{ {{a_n}} \right\}\) is given by

\(\begin{array}{c}L = \mathop {\lim }\limits_{n \to \infty } {a_n}\\L = \mathop {\lim }\limits_{n \to \infty } {a_{n + 1}}\\L = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{1}{3}\left( {{a_n} + 4} \right)} \right]\\L = \left[ {\frac{1}{3}(L + 4)} \right]\\3L = L + 4\\2L = 4\\L{\rm{ }} = 2\end{array}\)

As \(L\) exists, \(\left\{ {{a_n}} \right\}\) is convergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free