Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use series to evaluate the limit.

\(\mathop {lim}\limits_{x \to 0} \frac{{sinx - x + \frac{1}{6}{x^3}}}{{{x^5}}}\)

Short Answer

Expert verified

Therefore, the value of the given limit is: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x + \frac{1}{6}{x^3}}}{{{x^5}}} = \frac{1}{{120}}\)

Step by step solution

01

Step 1: Given information

The given limit is:

\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x + \frac{1}{6}{x^3}}}{{{x^5}}}\)

Note that the series for \(\sin x\)is given by:

\(\sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{{{x^{(2n + 1)}}}}{{(2n + 1)!}} = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \frac{{{x^9}}}{{9!}} - \ldots \)

02

Step 2: Substitution the expression into the limits

\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x + \frac{1}{6}{x^3}}}{{{x^5}}}\)

Substitute\(\sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \frac{{{x^9}}}{{9!}} - \ldots \)into the limit expression:\(\mathop {\lim }\limits_{x \to 0} \frac{{x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \frac{{{x^9}}}{{9!}} - \ldots - x + \frac{1}{6}{x^3}}}{{{x^5}}}\)

Substitute \(3! = 6,5! = 120,7! = 5040\) and \(9! = 362880\) into the expression:

\(\mathop {\lim }\limits_{x \to 0} \frac{{x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{120}} - \frac{{{x^7}}}{{5040}} + \frac{{{x^9}}}{{362880}} - \ldots - x + \frac{1}{6}{x^3}}}{{{x^5}}}\)

03

Step 3: Simplify the expression

\(\mathop {\lim }\limits_{x \to 0} \frac{{0 + 0 + \frac{{{x^5}}}{{120}} - \frac{{{x^7}}}{{5040}} + \frac{{{x^9}}}{{362880}} - \ldots }}{{{x^5}}}\)

Rewrite the expression as:

\(\mathop {\lim }\limits_{x \to 0} \frac{{\frac{{{x^5}}}{{120}} - \frac{{{x^7}}}{{5040}} + \frac{{{x^9}}}{{362880}} - \cdots }}{{{x^5}}}\)\(\mathop {\lim }\limits_{x \to 0} \frac{{{x^5}}}{{120 \cdot {x^5}}} - \frac{{{x^7}}}{{5040 \cdot {x^5}}} + \frac{{{x^9}}}{{362880 \cdot {x^5}}} - \ldots \)\(\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\frac{1}{{2!}} - \frac{{{x^2}}}{{4!}} + \frac{{{x^4}}}{{6!}} - ...} \right)}}{{ - \left( {\frac{1}{{2!}} + \frac{x}{{3!}} + \frac{{{x^2}}}{{4!}} + ..} \right)}}\)

04

Step 4: Substitute the terms

\(\begin{array}{l} = \frac{{{x^5}}}{{120{x^5}}}\\ = \frac{1}{{120}}\end{array}\)

\(\begin{array}{l} = \frac{{{x^7}}}{{5040{x^5}}}\\ = \frac{{{x^2}}}{{5040}}\end{array}\)

Simplify the terms:

\(\begin{array}{l}=\frac{{{x^9}}}{{362880{x^5}}}\\=\frac{{{x^4}}}{{362880}}\end{array}\)\(\mathop {\lim }\limits_{x \to 0} \frac{{{x^5}}}{{120 \cdot {x^5}}} - \frac{{{x^7}}}{{5040 \cdot {x^5}}} + \frac{{{x^9}}}{{362880 \cdot {x^5}}} - \ldots \)

Substitute \(\frac{{{x^5}}}{{120 \cdot {x^5}}} = \frac{1}{{120}}\)and \(\frac{{{x^7}}}{{5040 \cdot {x^5}}} = \frac{{{x^2}}}{{5040}}\) and \(\frac{{{x^9}}}{{362880 \cdot {x^5}}} = \frac{{{x^4}}}{{362880}}\)into the expression:\(\mathop {\lim }\limits_{x \to 0} \frac{1}{{120}} - \frac{{{x^2}}}{{5040}} + \frac{{{x^4}}}{{362880}} - \ldots \)

05

To determine the limit

To solve for the limit, substitute\(x = 0:\)

\( = \frac{1}{{120}} - \frac{{{0^2}}}{{5040}} + \frac{{{0^4}}}{{362880}} \ldots \)

Note that when the fraction's numerator is\(0,\)the fraction will also be equal to\(0:\)

\( = \frac{1}{{120}} - 0 + 0 \ldots \)\( = \frac{1}{{120}}\)

06

Evaluate the limit

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin (x) - x + \frac{1}{6}{x^3}}}{{{x^5}}}} \right)\)

Use the L'Hopital's rule

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\frac{d}{{dx}}\left( {\sin (x) - x + \frac{1}{6}{x^3}} \right)}}{{\frac{d}{{dx}}\left( {{x^5}} \right)}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\cos (x) - 1 + \frac{1}{2}{x^2}}}{{5{x^4}}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\frac{{2\cos (x) - 2 + {x^2}}}{2}}}{{5{x^4}}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{2\cos (x) - 2 + {x^2}}}{{10{x^4}}}} \right)\)

Use the L'Hopital's rule

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\frac{d}{{dx}}\left( {2\cos (x) - 2 + {x^2}} \right)}}{{\frac{d}{{dx}}\left( {10{x^4}} \right)}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{ - 2\sin (x) + 2x}}{{40{x^3}}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{ - \sin (x) + x}}{{20{x^3}}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\frac{d}{{dx}}( - \sin (x) + x)}}{{\frac{d}{{dx}}\left( {20{x^3}} \right)}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin (x)}}{{120x}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\frac{d}{{dx}}(\sin (x))}}{{\frac{d}{{dx}}(120x)}}} \right)\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\cos (x)}}{{120}}} \right)\)\(\frac{{\cos (0)}}{{120}}\)\( = \frac{1}{{120}}\)

Therefore, the value of the given limit is: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x + \frac{1}{6}{x^3}}}{{{x^5}}} = \frac{1}{{120}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When money is spent on goods and services, those who receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending \(D\) dollars. Suppose that each recipient of spent money spends \(100c\% \) and saves \(100s\% \) of the money that he or she receives. The values \(c\) and \(s\)are called themarginal propensity to consume and themarginal propensity to saveand, of course, \(c + s = 1\).

(a) Let \({S_n}\) be the total spending that has been generated after \(n\) transactions. Find an equation for \({S_n}\).

(b) Show that \(\mathop {\lim }\limits_{n \to \infty } {S_n} = kD\), where \(k = \frac{1}{s}\). The number \(k\) is called the multiplier. What is the multiplier if the marginal propensity to consume is \(80\% \)?

Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.

If\({\bf{\$ 1000}}\)is invested at\({\bf{6\% }}\) interest, compounded annually, then after\({\bf{n}}\)years the investment is worth \({{\bf{a}}_{\bf{n}}}{\bf{ = 1000(1}}{\bf{.06}}{{\bf{)}}^{\bf{n}}}\)dollars.

(a) Find the first five terms of the sequence\(\left\{ {{{\bf{a}}_{\bf{n}}}} \right\}\).

(b) Is the sequence convergent or divergent? Explain.

(a) Fibonacci posed the following problem: Suppose that rabbits live forever and that every month each pair produces a new pair which becomes productive at age 2 months. If we start with one new-born pair, how many pairs of rabbits will we have in the \(nth\) month? Show that the answer is \({f_n}\), where \(\left\{ {{f_n}} \right\}\) is theFibonacci sequencedefined in Example 3(c).

(b) Let \({a_n} = {f_{n + 1}}/{f_n}\)and show that \({a_{n - 1}} = 1 + 1/{a_{n - 2}}\).

Assuming that \(\left\{ {{a_n}} \right\}\) isconvergent, find its limit.

Find the value of \(c\) if \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)

Determine whether the sequence converges or diverges. If it converges, find the limit.

\({a_n} = \frac{{{{\cos }^2}n}}{{{2^n}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free