Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use series to evaluate the limit.\(\mathop {lim}\limits_{x \to 0} \frac{{x - ln(1 + x)}}{{{x^2}}}\)

Short Answer

Expert verified

Therefore, The value of the given limit is \(\mathop {lim}\limits_{x \to 0} \frac{{x - ln(1 + x)}}{{{x^2}}} = \frac{1}{2}.\)

Step by step solution

01

Step 1: Given information

The given limit is:

\(\mathop {lim}\limits_{x \to 0} \frac{{x - ln(1 + x)}}{{{x^2}}}\)

Note that the series for\(In(1 + x)\)is given by:

\(\begin{array}{l}In(1 + x) = \sum\limits_{n = 1}^\infty {{{( - 1)}^{n - 1}}\frac{{{x^n}}}{n}} \\ = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + ....\end{array}\)\(\mathop {lim}\limits_{x \to 0} \frac{{x - ln(1 + x)}}{{{x^2}}}\)

02

Step 2: Substitution the expression into the limits

Substitute\(In(1 + x) = \sum\nolimits_{n = 1}^\infty {{{( - 1)}^{n - 1}}} \frac{{{x^n}}}{n}\)into the limits:\(\mathop {\lim }\limits_{x \to 0} \frac{{x - \left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^{n - 1}}\frac{{{x^n}}}{n}} } \right)}}{{{x^2}}}\)

Note that\( - \left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^{n - 1}}} \frac{{{x^n}}}{n}} \right)\)can be written as\( + \left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^{n - 1}}} \frac{{{x^n}}}{n}} \right)\)by distributing the negative:\(\mathop {\lim }\limits_{x \to 0} \frac{{x + \left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^n}}}{n}} } \right)}}{{{x^2}}}\)

Separate the fractions:

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{x}{{{x^2}}} + \frac{{\left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^n}}}{n}} } \right)}}{{{x^2}}}} \right)\)

By the quotient of power property, the fraction \(\frac{{\left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^n}}}{n}} } \right)}}{{{x^2}}}\)can be written as \(\frac{{\left( {\sum\nolimits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^{n - 2}}}}{n}} } \right)}}{{{x^2}}}.\)\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{x}{{{x^2}}} + \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}\frac{{{x^{n - 2}}}}{n}} } \right)\)

03

Step 3: Simplify the fraction.

Integrate using the series.

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} + \sum\limits_{n = 1}^\infty {{{\left( { - 1} \right)}^n}\frac{{{x^{n - 2}}}}{n}} } \right)\)

Evaluate some values of the series:

\(\begin{array}{l}\sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{{{x^{n - 2}}}}{n}\\{( - 1)^n}\frac{{{x^{n - 2}}}}{n}\end{array}\)

Substitute \(n = 1:\)\({( - 1)^1}\frac{{{x^{1 - 2}}}}{1}\)\( - \frac{1}{x}\)

04

Step 4: Make a list of the series' terms.

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x}\sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^{n - 2}}}}{n}} } \right)\)

Substitute the limit:

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} - \frac{1}{x} + \frac{1}{2} - \frac{x}{3} + \frac{{{x^2}}}{4} - \frac{{{x^3}}}{5} + \cdots } \right)\)\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{2} - \frac{x}{3} + \frac{{{x^2}}}{4} - \frac{{{x^3}}}{5} + \cdots } \right)\)\( = \frac{1}{2} - 0 + 0 - 0 + \cdots \)\( = \frac{1}{2}\)

The value of the given limit is\(\mathop {lim}\limits_{x \to 0} \frac{{x - ln(1 + x)}}{{{x^2}}} = \frac{1}{2}.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free