Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the radius of convergence and radius of convergence of the series\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} \).

Short Answer

Expert verified

The radius of convergence is \(R = 1\)and the interval of convergence is\({\rm{I = ( - 1,1)}}\).

Step by step solution

01

The ratio test.

If\(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L < 1\), then the series\(\sum\limits_{n = 1}^\infty {{a_n}} \)is absolutely convergent.

Result used:

(1) Alternating test series.

If the alternating series\(\sum\limits_{n = 1}^\infty {{{( - 1)}^{n - 1}}} {b^n} = {b_1} - {b_2} + {b_3} - {b_4} + {b_5} - {b_6} + \ldots \)satisfies the condition,\({b_{n + 1}} \le {b_n}\)and\(\mathop {\lim }\limits_{x \to \infty } {b_n} = 0\), then the series is convergent.

(2) The p-series is convergent\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \)if\({\rm{p > 1}}\)and divergent if\(p \le 1\).

02

Use the ratio test for calculation.

The series \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} \)

Let\({a_n} = \frac{{{x^n}}}{{\sqrt[3]{n}}}\); ignore the term \({( - 1)^n}\) as it is an absolute value.

Let\({a_{n + 1}} = \frac{{{x^{n + 1}}}}{{\sqrt[3]{{n + 1}}}}\).

The absolute value of \(\frac{{{a_{n + 1}}}}{{{a_n}}}\) is computed as follows,

\(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \left| {\frac{{{x^{n + 1}}}}{{\sqrt[3]{{n + 1}}}} \cdot \frac{{\sqrt[3]{n}}}{{{x^n}}}} \right|\)

\( = \left| {\frac{{\sqrt[3]{n}x}}{{\sqrt[3]{{n + 1}}}}} \right|\)

\( = \left| {\left( {\frac{{\sqrt[3]{n}}}{{\sqrt[3]{{n + 1}}}}} \right)x} \right|\)

\( = \left| {{{\left( {\frac{n}{{n + 1}}} \right)}^{\frac{1}{3}}}x} \right|\)

On further simplification the value of \(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right|\) becomes,

\(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \left| {{{\left( {\frac{n}{{n + 1}},\frac{{\frac{1}{n}}}{{\frac{1}{n}}}} \right)}^{\frac{1}{3}}}x} \right|\)

\( = \left| {{{\left( {\frac{1}{{1 + \frac{1}{n}}}} \right)}^{\frac{1}{3}}}x} \right|\)

Apply the ratio test and simplify the term as shown below,

\(\mathop {\lim }\limits_{n \to \infty } \left| {{{\left( {\frac{1}{{1 + \frac{1}{n}}}} \right)}^{\frac{1}{3}}}x} \right| = \left| {{{\left( {\frac{1}{{1 + \frac{1}{z}}}} \right)}^{\frac{1}{3}}}x} \right|\)

\( = \left| {{1^{\frac{1}{3}}}x} \right|\)

\( = |x|\)

The series\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} \)converges as\({\rm{|x| < 1}}\).

Therefore, the radius of convergence is\({\rm{R = 1}}\).

Let\({\rm{x = - 1}}\) be the endpoint of the interval,

\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{{( - 1)}^n}}}{{\sqrt[3]{n}}}} \)

\( = \sum\limits_{n = 1}^\infty {\frac{{{1^n}}}{{{{(n)}^{\frac{1}{3}}}}}} \)

This is a p-series with\(p = \frac{1}{3}\). That is, the value of\(p\) is less than\(1\).

Thus, the series diverges.

Let\(x = 1\) be the endpoint of the interval,

\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{{(1)}^n}}}{{\sqrt[3]{n}}}} \)

\( = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{{(n)}^{\frac{1}{3}}}}}} \)

Consider the series\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{{(n)}^{\frac{1}{3}}}}}} \), where\({b_n} = \frac{1}{{{{(n)}^{\frac{1}{3}}}}}\).

Then, \({(n)^{\frac{1}{3}}} < {(n + 1)^{\frac{1}{3}}}\).

Thus, \(\frac{1}{{{{(n + 1)}^{\frac{1}{3}}}}} < \frac{1}{{{{(n)}^{\frac{1}{3}}}}}\)

That is, \({b_n} = \frac{1}{{{{(n)}^{\frac{1}{3}}}}}\) is decreasing. …… (1)

Obtain the limit\({b_n} = \frac{1}{{{{(n)}^{\frac{1}{3}}}}}\).

\(\mathop {\lim }\limits_{n \to \infty } {b_n} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{{{(n)}^{\frac{1}{3}}}}}\)

\( = \frac{1}{{\mathop {\lim }\limits_{n \to \infty } {{(n)}^{\frac{1}{3}}}}}\)

\( = \frac{1}{{{{(\infty )}^{\frac{1}{3}}}}}\)

\( = 0\) (1 = 0)

Therefore, the limit is\(\mathop {\lim }\limits_{n \to \infty } {b_n} = 0\). …… (2)

From equation (1) and (2), the series\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{\sqrt[3]{{n + 1}}}}} \) is convergent at the endpoint\(x = 1\) using the alternating series test.

Therefore, the interval of convergence is\({\rm{I = ( - 1,1)}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free