Chapter 8: Q46RE (page 499)
Find the Maclaurin series\({\rm{f}}\)and its radius of convergence. You may use either the direct method (definition of a Maclaurin series) or known series such as geometric series, binomial series, or the Maclaurin series for\({{\rm{e}}^{\rm{x}}}\),\({\rm{sinx}}\)and\({\rm{ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x}}\).
\({\rm{f(x) = x}}{{\rm{e}}^{{\rm{2x}}}}\).
Short Answer
The series and radius of converges are\(\sum\limits_{{\rm{n = 0}}}^\infty {\frac{{{{\rm{2}}^{\rm{n}}}{{\rm{x}}^{{\rm{n + 1}}}}}}{{{\rm{n!}}}}} {\rm{,}}\;\;\;{\rm{R = }}\infty \).