Chapter 8: Q46E (page 454)
Find all positive value of b for which the series \(\sum\limits_{n = 1}^\infty {{b^{\ln n}}} \) converges.
Short Answer
The given series \(\sum\limits_{n = 1}^\infty {{b^{\ln n}}} \)converges for \(b < \frac{1}{c}\).
Chapter 8: Q46E (page 454)
Find all positive value of b for which the series \(\sum\limits_{n = 1}^\infty {{b^{\ln n}}} \) converges.
The given series \(\sum\limits_{n = 1}^\infty {{b^{\ln n}}} \)converges for \(b < \frac{1}{c}\).
All the tools & learning materials you need for study success - in one app.
Get started for free\(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{{12}} + \frac{1}{{15}} + ......\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {2^{ - n}}\cos n\pi \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({\bf{\{ 0,1,0,0,1,0,0,0,1, \ldots \ldots \ldots \ldots \ldots \} }}\)
Determine whether the series is convergent or divergent. If its convergent, find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{(1 + {3^n})}}{{{2^n}}}} \)
\({\bf{37 - 40}}\) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
\({a_n} = \frac{1}{{2n + 3}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.