Chapter 8: Q45E (page 488)
Evaluate the indefinite integral as an infinite series. 45.\(\int {\frac{{cosx - 1}}{x}dx} \)
Short Answer
\(\int {{x^2}\sin ({x^2})dx = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^{2n}}}}{{(2n)(2n)!}} + C} } \)
Chapter 8: Q45E (page 488)
Evaluate the indefinite integral as an infinite series. 45.\(\int {\frac{{cosx - 1}}{x}dx} \)
\(\int {{x^2}\sin ({x^2})dx = \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^{2n}}}}{{(2n)(2n)!}} + C} } \)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?
\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({\bf{\{ 0,1,0,0,1,0,0,0,1, \ldots \ldots \ldots \ldots \ldots \} }}\)
Express the number as a ratio of integers.
\(\)\(0.\overline {46} = 0.46464646...\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{( - 1)}^n}}}{{2\sqrt n }}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \ln \left( {2{n^2} + 1} \right) - \ln \left( {{n^2} + 1} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.