Chapter 8: Q44E (page 488)
Evaluate the indefinite integral as an infinite series. 44.\(\int {\frac{{{e^x} - 1}}{x}dx} \)
Short Answer
\(\int {\frac{{{e^x} - 1}}{x}dx = \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{(n)(n)!}} + C} } \)
Chapter 8: Q44E (page 488)
Evaluate the indefinite integral as an infinite series. 44.\(\int {\frac{{{e^x} - 1}}{x}dx} \)
\(\int {\frac{{{e^x} - 1}}{x}dx = \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{(n)(n)!}} + C} } \)
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Find the partial sum S10of the series\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^4}}}} \) . Use Exercise 33(a) to estimate the error in using S10as an approximation to the sum of series.
(b) Use exercise 33(b) with n=10to give an improved estimate of the sum.
(c) Find a value of n so that \({{\bf{S}}_{\bf{n}}}\)is within 0.00001 of the sum.
Graph the curves\(y = {x^n}\),\(0 \le x \le 1\), for\(n = 0,1,2,3,4,....\)on a common screen. By finding the areas between successive curves, give a geometric demonstration of the fact, shown in Example 6, that
\(\sum\limits_{n = 1}^\infty {\frac{1}{{n(n + 1)}}} = 1\)
Find the value of \(c\) if \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \ln \left( {2{n^2} + 1} \right) - \ln \left( {{n^2} + 1} \right)\)
\(\sum\limits_{n = 2}^\infty {\ln \frac{n}{{n + 1}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.