Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the Maclaurin series\({\rm{f}}\)and its radius of convergence. You may use either the direct method (definition of a Maclaurin series) or known series such as geometric series, binomial series, or the Maclaurin series for\({{\rm{e}}^{\rm{x}}}\),\({\rm{sinx}}\)and\({\rm{ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x}}\).

\({\rm{f(x) = }}\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}\)

Short Answer

Expert verified

The series and radius of convergence are \(\sum\limits_{{\rm{n = 0}}}^\infty {{{{\rm{( - 1)}}}^{\rm{n}}}} {{\rm{x}}^{{\rm{n + 2}}}}\),\({\rm{1}}\).

Step by step solution

01

Geometric series rule.

A geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms.

It's important to keep in mind that the total of a geometric series with the initial term \({\rm{a}}\)and the common ratio \({\rm{r}}\)is \(\frac{{\rm{a}}}{{{\rm{1 - r}}}}\).

Compare \(\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}\)with \(\frac{{\rm{a}}}{{{\rm{1 - r}}}}\).

Therefore, can write \(\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}\)

The sum of series with initial term \({\rm{a = }}{{\rm{x}}^{\rm{2}}}\)and common ration \({\rm{r = - x}}\).

\(\begin{array}{c}\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{\rm{( - x) + }}{{\rm{x}}^{\rm{2}}}{{\rm{( - x)}}^{\rm{2}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{{\rm{( - x)}}^{\rm{3}}}{\rm{ \ldots \ldots }}\\\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{3}}}{\rm{ + }}{{\rm{x}}^{\rm{4}}}{\rm{ - }}{{\rm{x}}^{\rm{5}}}{\rm{ \ldots \ldots }}\\\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}\left( {{\rm{1 - x + }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{x}}^{\rm{3}}}{\rm{ \ldots \ldots }}} \right)\\\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}{\rm{ = }}\sum\limits_{{\rm{n = 0}}}^\infty {{{\rm{x}}^{\rm{2}}}} \left( {{{{\rm{( - 1)}}}^{\rm{n}}}{{\rm{x}}^{\rm{n}}}} \right)\\\frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{1 + x}}}}{\rm{ = }}\sum\limits_{{\rm{n = 0}}}^\infty {{{{\rm{( - 1)}}}^{\rm{n}}}} {{\rm{x}}^{{\rm{n + 2}}}}\end{array}\)

02

To find the radius of convergence.

As per the radio test.

\(\sum\limits_{{\rm{n = 0}}}^\infty {{{\rm{a}}_{\rm{n}}}} \)

\(\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \left| {\frac{{{{\rm{a}}_{{\rm{n + 1}}}}}}{{{{\rm{a}}_{\rm{n}}}}}} \right|{\rm{ < 1}}\)

Here,

\({{\rm{a}}_{\rm{n}}}{\rm{ = ( - 1}}{{\rm{)}}^{\rm{n}}}{{\rm{x}}^{{\rm{n + 2}}}}\)

So,

\(\begin{array}{l}{{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = ( - 1}}{{\rm{)}}^{{\rm{n + 1}}}}{{\rm{x}}^{{\rm{n + 3}}}}\\{{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = }}{{\rm{a}}_{\rm{n}}}{\rm{ \times ( - 1)x}}\end{array}\)

Therefore,

\(\begin{array}{c}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \left| {\frac{{{{\rm{a}}_{{\rm{n + 1}}}}}}{{{{\rm{a}}_{\rm{n}}}}}} \right|{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } {\rm{| - x|}}\\\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \left| {\frac{{{{\rm{a}}_{{\rm{n + 1}}}}}}{{{{\rm{a}}_{\rm{n}}}}}} \right|{\rm{ = |x| < 1}}\end{array}\)

As a result, the convergence interval is \({\rm{( - 1,1)}}\)and the radius of convergence is \({\rm{1}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free