Chapter 8: Q43E (page 488)
Evaluate the indefinite integral as an infinite series. 43.\(\int {xcos({x^3})dx} \)
Short Answer
\(\int {x\cos ({x^3})dx = \sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^{6n + 2}}}}{{(6n + 2)(2n)!}} + C} } \)
Chapter 8: Q43E (page 488)
Evaluate the indefinite integral as an infinite series. 43.\(\int {xcos({x^3})dx} \)
\(\int {x\cos ({x^3})dx = \sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^{6n + 2}}}}{{(6n + 2)(2n)!}} + C} } \)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{{12}} + \frac{1}{{15}} + ......\)
Determine whether the series is convergent or divergent. If its convergent, find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{(1 + {3^n})}}{{{2^n}}}} \)
Determine whether the geometric series is convergent or divergent. If convergent, find its sum.
\(\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \)
If the nth partial sum of a series \(\sum\limits_{n = 1}^\infty {{a_n}} \) is \({s_n} = 3 - n{2^{ - n}}\), find \({a_n}\)and \(\sum\limits_{n = 1}^\infty {{a_n}} \).
\(\sum\limits_{n = 1}^\infty {\cos (\frac{1}{n}} )\) Find Whether It Is Convergent (Or) Divergent. If It Is Convergent Find Its Sum.
What do you think about this solution?
We value your feedback to improve our textbook solutions.