Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Expand \({\raise0.7ex\hbox{\(1\)} \!\mathord{\left/ {\vphantom {1 {\sqrt[4]{{1 + x}}}}}\right.\\}\!\lower0.7ex\hbox{\({\sqrt[4]{{1 + x}}}\)}}\)as a power series.

(b) Use part (a) to estimate \({\raise0.7ex\hbox{\(1\)} \!\mathord{\left/ {\vphantom {1 {\sqrt[4]{{1.1}}}}}\right.\\}\!\lower0.7ex\hbox{\({\sqrt[4]{{1.1}}}\)}}\) correct to three decimal places.

(c) Expand \({\raise0.7ex\hbox{\(1\)} \!\mathord{\left/ {\vphantom {1 {\sqrt[4]{{1 + x}}}}}\right.\\}\!\lower0.7ex\hbox{\({\sqrt[4]{{1 + x}}}\)}}\)as a power series.

Short Answer

Expert verified

\(1 + \sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)}}{{{4^n} \cdot n!}}} {x^n}\)

Step by step solution

01

Step 1: Use binomial series

We can use the binomial series with \(k = - \frac{1}{4}\). Plug the values in then write out some series terms. Look for the patterns to rewrite the summation without binomial thing.

\(\begin{array}{l}{(1 + x)^k} = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}}k\\n\end{array}} \right){x^n}} \\ = 1 + kx + \frac{{k(k - 1)}}{{2!}}{x^2} + \frac{{k(k - 1)(k - 2)}}{{3!}}{x^3} + ..........,R = 1\\{(1 + x)^{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}}}} = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}}{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}}}\\n\end{array}} \right){x^n}} \end{array}\)\(\begin{array}{l} = 1 - \frac{1}{4}x + \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 1} \right)}}{{2!}}{x^2} + \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 1} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 2} \right)}}{{3!}}{x^3} + \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 1} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 2} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 4}}\right.\\}\!\lower0.7ex\hbox{$4$}} - 3} \right)}}{{4!}}{x^4} + ......\\ = 1 - \frac{1}{4}x + \frac{5}{{{4^2} \cdot 2!}}{x^2} - \frac{{5 \cdot 9}}{{{4^3} \cdot 3!}}{x^3} + \frac{{5 \cdot 9 \cdot 13}}{{{4^4} \cdot 4!}}{x^4} + .......\end{array}\)\( = 1 + \sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)}}{{{4^n} \cdot n!}}} {x^n}\)

02

Step 2: Convergence\(1 + \sum\limits_{n = 1}^\infty  {{{( - 1)}^n}\frac{{1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)}}{{{4^n} \cdot n!}}} {x^n}\)Where the \(1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)\) part means if there are any numbers between \(1\;\& \;(4n - 3)\), multiply \(1 \cdot 5 \cdot 9 \cdot13......up\;to(4n - 3)\)This converges when \(\left| x \right| < 1\)(b) Use part (a) to estimate \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {\sqrt[4]{{1.1}}}}}\right.\\}\!\lower0.7ex\hbox{${\sqrt[4]{{1.1}}}$}}\)  correct to three decimal places.

\({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1{\sqrt[4]{{1.1}}}}}\right.\\}\!\lower0.7ex\hbox{${\sqrt[4]{{1.1}}}$}} = 0.976\)

03

Step 1: Solution we have from part a

\(1 + \sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)}}{{{4^n} \cdot n!}}} {x^n}\)

Where the \(1 \cdot 5 \cdot 9 \cdot 13......(4n - 3)\) part means if there are any numbers between \(1\;\& \;(4n - 3)\), multiply \(1 \cdot 5 \cdot 9 \cdot 13......up\;to(4n - 3)\)

This converges when \(\left| x \right| < 1\)

04

Step 2: Use of series for estimation

To estimate \(\frac{1}{{\sqrt[4]{{1.1}}}} = \frac{1}{{\sqrt[4]{{1 + 0.1}}}}\)we use the series with \(x = 0.1\)

It is an alternating series, so we look for the first term that is \(\left| {{a_n}} \right| < 0.001\)

Then we can use the partial sum up to but not including that term.

\(n\)

\({a_n}\)

\(1\)

\( - 0.025\)

\(2\)

\(0.0015625\)

\(3\)

\( - 0.0001171875\)

So we only need up to\(n = 2\)

\(\frac{1}{{\sqrt[4]{{1.1}}}} \approx 1 + ( - 0.025) + (0.0015625) \approx 0.976\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What can you say about the series \(\sum {{a_n}} \) in each of the following cases?

(a) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 8\)

(b) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 0.8\)

(c) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 1\)

\(\sum\limits_{n = 1}^\infty {\arctan (n)} \) Find Whether It Is Convergent Or Divergent And Find Its Sum If It Is Convergent.

When money is spent on goods and services, those who receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending \(D\) dollars. Suppose that each recipient of spent money spends \(100c\% \) and saves \(100s\% \) of the money that he or she receives. The values \(c\) and \(s\)are called themarginal propensity to consume and themarginal propensity to saveand, of course, \(c + s = 1\).

(a) Let \({S_n}\) be the total spending that has been generated after \(n\) transactions. Find an equation for \({S_n}\).

(b) Show that \(\mathop {\lim }\limits_{n \to \infty } {S_n} = kD\), where \(k = \frac{1}{s}\). The number \(k\) is called the multiplier. What is the multiplier if the marginal propensity to consume is \(80\% \)?

Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.

After injection of a dose D of insulin, the concentration of insulin in a patient's system decays exponentially and so it can be written as \(D{e^{ - at}}\), where t represents time in hours and a is a positive constant.

(a) If a dose \(D\) is injected every \(T\) hours, write an expression for the sum of the residual concentrations just before the \((n + 1)\)st injection.

(b) Determine the limiting pre-injection concentration.

(c) If the concentration of insulin must always remain at or above a critical value \(C\), determine a minimal dosage \(D\) in terms of \(C\) , \(a\), and \(T\).

Determine whether the sequence converges or diverges. If it converges, find the limit.

\({a_n} = \cos \left( {\frac{n}{2}} \right).\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free