Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the sum of the infinite series by using the power series\({\tan ^{ - 1}}(x)\).

\(\pi = 2\sqrt 3 \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{(2n + 1){3^n}}}} \)

Short Answer

Expert verified

The sum of the infinite series is\(\pi = \frac{6}{{\sqrt 3 }}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{(2n + 1) \cdot {3^n}}}} \).

Step by step solution

01

Power series expansion

The power series expansion for \({\tan ^{ - 1}}(x) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{{{x^{2n + 1}}}}{{2n + 1}}\)

02

Calculate the sum of the infinite series

As given, the expression for\(\pi = 2\sqrt 3 \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{(2n + 1){3^n}}}} \).

By using power series expansion \({\tan ^{ - 1}}(x) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{{{x^{2n + 1}}}}{{2n + 1}}\)

Replace \(x\) for\(\frac{1}{{\sqrt 3 }}\), then the series expressed as follows

\({\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{{{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^{2n + 1}}}}{{2n + 1}}\)

\({\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{{{(\sqrt 3 )}^{2n + 1}}2n + 1}}\)

\({\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{(\sqrt 3 ) \cdot {{(\sqrt 3 )}^{2n}} \cdot 2n + 1}}\)

\(\frac{\pi }{6} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{(\sqrt 3 ) \cdot \left( {{3^n}} \right) \cdot 2n + 1}}\)

Further, multiply both side by 6

\(\begin{aligned}\pi &= \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{6}{{(\sqrt 3 ) \cdot \left( {{3^n}} \right) \cdot (2n + 1)}}\\\pi &= \frac{6}{{\sqrt 3 }}\sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{{3^n} \cdot (2n + 1)}}\\\pi &= \frac{6}{{\sqrt 3 }}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{(2n + 1) \cdot {3^n}}}} \end{aligned}\)

Therefore, sum of the infinite series is\(\pi = \frac{6}{{\sqrt 3 }}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{(2n + 1) \cdot {3^n}}}} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free