\(\frac{1}{{\sqrt {1 - x{}^2} }} = {(1 - {x^2})^{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}}} = {(1 + ( - {x^2}))^{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}}}\)
We can use the binomial series with \(k = - \frac{1}{2}\;\& \; - {x^2} \to x\). Plug the values in then write out some series terms. Look for the patterns to rewrite the summation without binomial thing.
\(\begin{array}{l}{(1 + x)^k} = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}}k\\n\end{array}} \right){x^n}} \\ = 1 + kx + \frac{{k(k - 1)}}{{2!}}{x^2} + \frac{{k(k - 1)(k - 2)}}{{3!}}{x^3} + ..........,R = 1\\{(1 + ( - x))^{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}}} = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}}{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}}\\n\end{array}} \right){{( - {x^2})}^n} = } \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}}{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}}\\n\end{array}} \right){{( - 1)}^n}} {x^{2n}}\end{array}\)\(\begin{array}{l} = 1 + \frac{1}{2}{x^2} + \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 1} \right)}}{{2!}}{x^4} - \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 1} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 2} \right)}}{{3!}}{x^6} + \frac{{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}}\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 1} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 2} \right)\left( {{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/ {\vphantom {{ - 1} 2}}\right.\\}\!\lower0.7ex\hbox{$2$}} - 3} \right)}}{{4!}}{x^8} + ......\\ = 1 + \frac{1}{2}{x^2} + \frac{3}{{{2^2} \cdot 2!}}{x^4} + \frac{{5 \cdot 3}}{{{2^3} \cdot 3!}}{x^6} + \frac{{3 \cdot 5 \cdot 7}}{{{2^4} \cdot 4!}}{x^8} + .......\end{array}\)\( = 1 + \sum\limits_{n = 1}^\infty {\frac{{1 \cdot 3 \cdot 5 \cdot 7......(2n - 1)}}{{{2^n} \cdot n!}}} {x^{2n}}\)