After the Ratio Test. Remember for rational functions, if the degrees of the numerator and denominator are equal and same, then the limit is just the leading coefficients.
\(\begin{array}{c}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \left| {\frac{{{\rm{4}}{{\rm{n}}^{\rm{2}}}{\rm{ + 6n + 2}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ + 2n + 1}}}}{\rm{ \times x}}} \right|{\rm{ = }}\left| {\frac{{\rm{4}}}{{\rm{1}}}{\rm{x}}} \right|\\{\rm{ = |4x|}}\end{array}\)
The series will converge when \({\rm{|4 x| < 1}}\) or \({\rm{|x| < }}\frac{{\rm{1}}}{{\rm{4}}}\)which gives us a radius of convergence \({\rm{R = }}\frac{{\rm{1}}}{{\rm{4}}}\)because the interval for xis from \({\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{,}}\frac{{\rm{1}}}{{\rm{4}}}\).
Therefore, the radius of convergence of the series is \({\rm{R = }}\frac{{\rm{1}}}{{\rm{4}}}\).