Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the radius of convergence of the series \(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{{\rm{(2n)!}}}}{{{{{\rm{(n!)}}}^{\rm{2}}}}}} {{\rm{x}}^{\rm{n}}}\)

Short Answer

Expert verified

The radius of convergence of the series is \({\rm{R = }}\frac{{\rm{1}}}{{\rm{4}}}\).

Step by step solution

01

Put \({\rm{n = n + 1}}\).

\(\infty _{{\rm{n = 1}}}^\infty \frac{{{\rm{(2n)!}}}}{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{\rm{x}}^{\rm{n}}}\)

Let

\(\begin{array}{c}{{\rm{a}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{(2n)!}}}}{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{\rm{x}}^{\rm{n}}}\\{\rm{put n = n + 1}}\\{{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{{\rm{(2(n + 1))!}}}}{{{{{\rm{((n + 1)!)}}}^{\rm{2}}}}}{{\rm{x}}^{{\rm{n + 1}}}}\\{\rm{ = }}\frac{{{\rm{(2n + 2)!}}}}{{{{{\rm{((n + 1)!)}}}^{\rm{2}}}}}{{\rm{x}}^{{\rm{n + 1}}}}\end{array}\)

02

Take the ratio test,

First, do the ratio test,

\(\begin{array}{c}\frac{{{{\rm{a}}_{{\rm{n + 1}}}}}}{{{{\rm{a}}_{\rm{n}}}}}{\rm{ = }}\frac{{\frac{{{\rm{(2n + 2)!}}}}{{{{{\rm{((n + 1)!)}}}^{\rm{2}}}}}{{\rm{x}}^{{\rm{n + 1}}}}}}{{\frac{{{\rm{(2n)!}}}}{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{\rm{x}}^{\rm{n}}}}}\\{\rm{ = }}\frac{{{\rm{(2n + 2)!}}}}{{{{{\rm{((n + 1)!)}}}^{\rm{2}}}}}{{\rm{x}}^{{\rm{n + 1}}}}{\rm{ \times }}\frac{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{{\rm{(2n)!}}{{\rm{x}}^{\rm{n}}}}}\\{\rm{ = }}\frac{{{\rm{(2n + 2)(2n + 1) \times (2n)!}}}}{{{{{\rm{((n + 1)(n!))}}}^{\rm{2}}}}}{\rm{x \times }}\frac{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{{\rm{(2n)!}}}}\\{\rm{ = }}\frac{{{\rm{(2n + 2)(2n + 1)}}}}{{{{{\rm{(n + 1)}}}^{\rm{2}}}{{{\rm{(n!)}}}^{\rm{2}}}}}{\rm{ \times }}\frac{{{{{\rm{(n!)}}}^{\rm{2}}}}}{{\rm{1}}}{\rm{ \times x}}\\{\rm{ = }}\frac{{{\rm{(2n + 2)(2n + 1)}}}}{{{{{\rm{(n + 1)}}}^{\rm{2}}}}}{\rm{ \times x}}\\\frac{{{{\rm{a}}_{{\rm{n + 1}}}}}}{{{{\rm{a}}_{\rm{n}}}}}{\rm{ = }}\frac{{{\rm{4}}{{\rm{n}}^{\rm{2}}}{\rm{ + 6n + 2}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ + 2n + 1}}}}{\rm{ \times x}}\end{array}\)

03

Find the converges of the series.

After the Ratio Test. Remember for rational functions, if the degrees of the numerator and denominator are equal and same, then the limit is just the leading coefficients.

\(\begin{array}{c}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \left| {\frac{{{\rm{4}}{{\rm{n}}^{\rm{2}}}{\rm{ + 6n + 2}}}}{{{{\rm{n}}^{\rm{2}}}{\rm{ + 2n + 1}}}}{\rm{ \times x}}} \right|{\rm{ = }}\left| {\frac{{\rm{4}}}{{\rm{1}}}{\rm{x}}} \right|\\{\rm{ = |4x|}}\end{array}\)

The series will converge when \({\rm{|4 x| < 1}}\) or \({\rm{|x| < }}\frac{{\rm{1}}}{{\rm{4}}}\)which gives us a radius of convergence \({\rm{R = }}\frac{{\rm{1}}}{{\rm{4}}}\)because the interval for xis from \({\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{,}}\frac{{\rm{1}}}{{\rm{4}}}\).

Therefore, the radius of convergence of the series is \({\rm{R = }}\frac{{\rm{1}}}{{\rm{4}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free