Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the Taylor polynomial \({{\rm{T}}_{\rm{3}}}{\rm{(x)}}\)for the function centered at the number a, Graph \({\rm{f}}\) and \({{\rm{T}}_{\rm{3}}}\)on the same screen.

\({\rm{f}}\left( {\rm{x}} \right){\rm{ = }}\frac{{\rm{1}}}{{\rm{x}}}{\rm{,\;a = 2}}\)

Short Answer

Expert verified

The Taylor polynomial for the function centered at the number a, is \({{\rm{T}}_{\rm{3}}}{\rm{(x) = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{{\rm{(x - 2)}}}}{{\rm{4}}}{\rm{ + }}\frac{{{{{\rm{(x - 2)}}}^{\rm{2}}}}}{{\rm{8}}}{\rm{ - }}\frac{{{{{\rm{(x - 2)}}}^{\rm{3}}}}}{{{\rm{16}}}}\).

Step by step solution

01

Definition on Taylor polynomial

A Taylor series is a clever approach to approximate any function as an infinitely many-term polynomial. The Taylor polynomial's terms are derived from the function's derivatives at a single point.

02

Finding the value of \({{\rm{T}}_{\rm{3}}}{\rm{(x)}}\)

Consider the given information and simplify,

\({{\rm{T}}_{\rm{n}}}{\rm{(x)}}\) centered at ‘a’ is \(\sum\limits_{{\rm{r = 0}}}^{\rm{n}} {\frac{{{{\rm{f}}^{\rm{r}}}{\rm{(a)(xa}}{{\rm{)}}^{\rm{r}}}}}{{{\rm{r!}}}}}\).\({{\rm{T}}_{\rm{3}}}{\rm{(x)=}}\frac{{{\rm{f(2)\times(x2}}{{\rm{)}}^{\rm{0}}}}}{{{\rm{0!}}}}{\rm{+}}\frac{{{{\rm{f}}'}{\rm{(2)\times(x2}}{{\rm{)}}^{\rm{1}}}}}{{{\rm{1!}}}}{\rm{+}}\frac{{{{\rm{f}}{''}}{\rm{(2)\times(x2}}{{\rm{)}}^{\rm{2}}}}}{{{\rm{2!}}}}{\rm{+}}\frac{{{{\rm{f}}^{'''}}{\rm{(2)\times(x2}}{{\rm{)}}^{\rm{3}}}}}{{{\rm{3!}}}}\)\({\rm{f(x)=}}\frac{{\rm{1}}}{{\rm{x}}}\Rightarrow{\rm{f(2)=}}\frac{{\rm{1}}}{{\rm{2}}}\)\({{\rm{f}}^{\rm{'}}}{\rm{(x)=- }}\frac{{\rm{1}}}{{{{\rm{x}}^{\rm{2}}}}} \Rightarrow {{\rm{f}}^{\rm{'}}}{\rm{(2) = }}\frac{{\rm{1}}}{{\rm{4}}}\)\({{\rm{f}}^{{\rm{''}}}}{\rm{(x)=}}\frac{{\rm{2}}}{{{{\rm{x}}^{\rm{3}}}}}\Rightarrow{{\rm{f}}^{{\rm{''}}}}{\rm{(2)=}}\frac{{\rm{1}}}{{\rm{4}}}\)\({{\rm{f}}^{{\rm{'''}}}}{\rm{(x)=}}\frac{{\rm{6}}}{{{{\rm{x}}^{\rm{4}}}}}\Rightarrow {{\rm{f}}^{{\rm{'''}}}}{\rm{(2) = - }}\frac{{\rm{3}}}{{\rm{8}}}\)

Hence, we get:

\({{\rm{T}}_{\rm{3}}}{\rm{(x) = }}\frac{{{\rm{f(2) \times (x - 2}}{{\rm{)}}^{\rm{0}}}}}{{{\rm{0!}}}}{\rm{ + }}\frac{{{\rm{f'(2) \times (x - 2}}{{\rm{)}}^{\rm{1}}}}}{{{\rm{1!}}}}{\rm{ + }}\frac{{{\rm{f''(2) \times (x - 2}}{{\rm{)}}^{\rm{2}}}}}{{{\rm{2!}}}}{\rm{ + }}\frac{{{\rm{f'''(2) \times (x - 2}}{{\rm{)}}^{\rm{3}}}}}{{{\rm{3!}}}}\)

\({{\rm{T}}_{\rm{3}}}{\rm{(x) = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\frac{{\rm{1}}}{{\rm{1}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ \times }}\frac{{{\rm{(x - 2)}}}}{{\rm{1}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ \times }}\frac{{{{{\rm{(x - 2)}}}^{\rm{2}}}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{3}}}{{\rm{8}}}{\rm{ \times }}\frac{{{{{\rm{(x - 2)}}}^{\rm{3}}}}}{{\rm{6}}}\)

\({{\rm{T}}_{\rm{3}}}{\rm{(x) = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{{\rm{(x - 2)}}}}{{\rm{4}}}{\rm{ + }}\frac{{{{{\rm{(x - 2)}}}^{\rm{2}}}}}{{\rm{8}}}{\rm{ - }}\frac{{{{{\rm{(x - 2)}}}^{\rm{3}}}}}{{{\rm{16}}}}\)

Therefore, the Taylor polynomial for the function centered at the number a, is \({{\rm{T}}_{\rm{3}}}{\rm{(x) = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{{\rm{(x - 2)}}}}{{\rm{4}}}{\rm{ + }}\frac{{{{{\rm{(x - 2)}}}^{\rm{2}}}}}{{\rm{8}}}{\rm{ - }}\frac{{{{{\rm{(x - 2)}}}^{\rm{3}}}}}{{{\rm{16}}}}\).

03

Plotting the required graph

In the graph below,

\(y = f\left( x \right)\)is the black curve

\(y = {T_3}\left( x \right)\)is the blue curve

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free