Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the radius of convergence and interval of convergence of a series, \(\sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{x^n}\).

Short Answer

Expert verified

The radius of convergence is \(R = 1\) and the interval of convergence is\({\rm{I = ( - 1,1)}}\).

Step by step solution

01

The ration test.

If \(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L < 1\), then the series\(\sum\limits_{n = 1}^\infty {{a_n}} \)is absolutely convergent.

02

Use the ratio test for calculation.

Let\({a_n} = {( - 1)^n}n{x^n}\).

Then, \({a_{n + 1}} = {( - 1)^{n + 1}}(n + 1){x^{n + 1}}\).

Obtain\(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right|\)

\(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \left| {\frac{{{{( - 1)}^{n + 1}}(n + 1){x^{n + 1}}}}{{{{( - 1)}^n}n{x^n}}}} \right|\)

Take\(\mathop {\lim }\limits_{n \to \infty } \) on both sides,

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| &= \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{( - 1)}^{n + 1}}(n + 1){x^{n + 1}}}}{{{{( - 1)}^n}n{x^n}}}} \right|\\ &= \mathop {\lim }\limits_{n \to \infty } \left| {( - 1)\frac{{(n + 1)x}}{n}} \right|\\ &= \mathop {\lim }\limits_{n \to \infty } \left( {\left( {\frac{n}{n} + \frac{1}{n}} \right)|x|} \right)\\ &= \mathop {\lim }\limits_{n \to \infty } \left( {\left( {1 + \frac{1}{n}} \right)|x|} \right)\end{aligned}\)

Apply the ratio test,

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } \left( {\left( {1 + \frac{1}{n}} \right)|x|} \right) &= \left( {\left( {1 + \frac{1}{\infty }} \right)|x|} \right)\\ &= ((1 + 0)|x|)\\ &= |x|\end{aligned}\)

The series \(\sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{x^n}\) converges as\({\rm{|x| < 1}}\).

Therefore, the radius of convergence is\(R = 1\), and the interval is\({\rm{( - 1,1)}}\).

Let\({\rm{x = - 1}}\) be the endpoint of the interval. Then, the series becomes,

\(\begin{aligned}\sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{x^n} &= \sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{( - 1)^n}\\ &= \sum\limits_{n = 1}^\infty {((} - 1)( - 1){)^n}n\\ &= \sum\limits_{n = 1}^\infty {{1^n}} n\\ &= \sum\limits_{n = 1}^\infty n \end{aligned}\)

Then the series approaches to\(\infty \), which is a divergence series.

Let \({\rm{x = 1}}\) be the endpoint of the interval. Then, the series becomes,

\(\begin{aligned}\sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{x^n} &= \sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n{(1)^n}\\ &= \sum\limits_{n = 1}^\infty {{{( - 1)}^n}} n\end{aligned}\)

The limit does not exist when\(n \to \infty \). Thus, the series diverges.

Therefore, the endpoints cannot consider for the interval of convergence as the limit does not exist.

Hence, the required interval of the convergence is\({\rm{I = ( - 1,1)}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free