Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the radius of convergence and interval of convergence of the series. \(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{{{\rm{2}}^{\rm{n}}}{{{\rm{(x - 2)}}}^{\rm{n}}}}}{{{\rm{(n + 2)!}}}}} \)

Short Answer

Expert verified

The sequence is bounded by \({\rm{ - }}\frac{{\rm{1}}}{{\rm{7}}}\)and \(\frac{2}{3}\). Hence it is increasing along with the boundary values.

Step by step solution

01

Finding the Sequence.

To find whether the sequence is increasing or decreasing, check the difference between \({{\rm{a}}_{\rm{n}}}\)and \({{\rm{a}}_{{\rm{n + 1}}}}\)

\(\begin{array}{c}{{\rm{a}}_{\rm{n}}}{\rm{ - }}{{\rm{a}}_{{\rm{n + 1}}}}{\rm{ = }}\frac{{{\rm{2n - 3}}}}{{{\rm{3n + 4}}}}{\rm{ - }}\frac{{{\rm{2(n + 1) - 3}}}}{{{\rm{3(n + 1) + 4}}}}\\{\rm{ = }}\frac{{{\rm{2n - 3}}}}{{{\rm{3n + 4}}}}{\rm{ - }}\frac{{{\rm{2n + 2 - 3}}}}{{{\rm{3n + 3 + 4}}}}\\{\rm{ = }}\frac{{{\rm{2n - 3}}}}{{{\rm{3n + 4}}}}{\rm{ - }}\frac{{{\rm{2n - 1}}}}{{{\rm{3n + 7}}}}\\{\rm{ = }}\frac{{{\rm{(2n - 3)(3n + 7) - (2n - 1)(3n + 4)}}}}{{{\rm{(3n + 4)(3n + 7)}}}}\\{\rm{ = }}\frac{{\left( {{\rm{6}}{{\rm{n}}^{\rm{2}}}{\rm{ + 14n - 9n - 21}}} \right){\rm{ - }}\left( {{\rm{6}}{{\rm{n}}^{\rm{2}}}{\rm{ + 8n - 3n - 4}}} \right)}}{{{\rm{(3n + 4)(3n + 7)}}}}\\{\rm{ = }}\frac{{{\rm{6}}{{\rm{n}}^{\rm{2}}}{\rm{ + 5n - 21 - 6}}{{\rm{n}}^{\rm{2}}}{\rm{ - 5n + 4}}}}{{{\rm{(3n + 4)(3n + 7)}}}}\\{\rm{ = - }}\frac{{{\rm{17}}}}{{{\rm{(3n + 4)(3n + 7)}}}}{\rm{ < 0}}\end{array}\)

Here,\({\rm{3n + 4}}\)and \({\rm{3n + 7}}\)are positive integers.

Therefore,

\(\begin{array}{l}{{\rm{a}}_{\rm{n}}}{\rm{ - }}{{\rm{a}}_{{\rm{n + 1}}}}{\rm{ < 0}}\\{{\rm{a}}_{\rm{n}}}{\rm{ < }}{{\rm{a}}_{{\rm{n + 1}}}}\end{array}\)

Hence it is increasing and it is bounded by its first term.

\(\begin{array}{c}{{\rm{a}}_{\rm{1}}}{\rm{ = }}\frac{{{\rm{2 \times 1 - 3}}}}{{{\rm{3 \times 1 + 4}}}}\\{\rm{ = - }}\frac{{\rm{1}}}{{\rm{7}}}\end{array}\)

02

Finding the limits.

\(\begin{array}{c}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{{\rm{2n - 3}}}}{{{\rm{3n + 4}}}}{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{\frac{{{\rm{2n}}}}{{\rm{n}}}{\rm{ - }}\frac{{\rm{3}}}{{\rm{n}}}}}{{\frac{{{\rm{3n}}}}{{\rm{n}}}{\rm{ + }}\frac{{\rm{4}}}{{\rm{n}}}}}\\{\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{{\rm{2 - }}\frac{{\rm{3}}}{{\rm{n}}}}}{{{\rm{3 + }}\frac{{\rm{4}}}{{\rm{n}}}}}\\{\rm{ = }}\frac{{\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } {\rm{2 - }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{\rm{3}}}{{\rm{n}}}}}{{\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } {\rm{3 + }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{\rm{4}}}{{\rm{n}}}}}\\{\rm{ = }}\frac{{{\rm{2 - 0}}}}{{{\rm{3 - 0}}}}\\{\rm{ = }}\frac{{\rm{2}}}{{\rm{3}}}\\\end{array}\)

Thus, the sequence is bounded by \({\rm{ - }}\frac{{\rm{1}}}{{\rm{7}}}\)and \(\frac{2}{3}\). Hence it is increasing along with the boundary values.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free