Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a Maclaurin series in Table 1 to obtain the Maclaurin series for the given function

Short Answer

Expert verified

The Maclaurin series for the given function is\(\frac{{x - \sin x}}{{{x^3}}} = \sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}} \frac{{{2^{2n + 1}}}}{{(2n)!}}{x^{2n}}\) and \(f(x) = \frac{1}{6},ifx = 0\)

Step by step solution

01

Step 1: Applied the Maclaurin series

By replacing the Maclaurin series function of given function

\(\begin{aligned}{l}f(x) = \frac{{x - \sin x}}{{{x^3}}}ifx \ne 0\\\sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{1}{{(2n + 1)!}}} {x^{2n + 1}}\end{aligned}\)

02

Step 2: Maclaurin series function of the given function

Maclaurin series function of the given function \(\begin{aligned}{l}\frac{{x - \sin x}}{{{x^3}}} = \frac{{x - \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{1}{{(2n + 1)!}}} {x^{2n + 1}}}}{{{x^3}}}\\ = \frac{{x - x - \sum\limits_{n = 1}^2 {{{( - 1)}^n}} \frac{1}{{(2n + 1)!}}{x^{2n + 1}}}}{{{x^3}}}\\ = - \sum\limits_{n = 1}^{2\hat n} {{{( - 1)}^n}} \frac{1}{{(2n + 1)!}}{x^{2n + 1}}\end{aligned}\)

03

Step 3: Substitute n=n+1  in series

Substitute the n values in series

\(\begin{aligned}{l}\frac{{x - \sin x}}{{{x^3}}} = \frac{{ - \sum\limits_{n = 0}^n {{{( - 1)}^n}} \frac{1}{{(2(n + 1) + 1)!}}{x^{2(n + 1) + 1}}}}{{{x^3}}}\\ = - \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{(2n + 3)!{x^{ - 3}}}}{x^{2n + 3}}\\ = - \sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{{(2n + 3)!}}{x^{2n}}\\\frac{{x - \sin x}}{{{x^3}}} = \sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}} \frac{{{2^{2n + 1}}}}{{(2n)!}}{x^{2n}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free