Chapter 8: Q36E (page 475)
(a) Show the function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)which satisfies the differential equation\({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0.\)
(b) Show that the \(J_0^\prime (x) = - {J_1}(x)\).
Short Answer
(a) The function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \) which satisfies the differential equation \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0\).
(b) The condition satisfied \({J^\prime }_0(x) = - {J_1}(x)\).
Step by step solution
Concept of differential equation.
Differential equations take a form similar to \(f(x) + f'(x) = 0\), where \(f'\)is “f-prime,” the derivative of \(f'\), such an equation relates a function \(f(x)\) to its derivative. In order to solve the differential equation, you must first find the function \(f(x)\).
Differentiate the function and substitute the values.
(a)
The function is \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
Let \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
\(J_1^\prime (x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
\({J^{\prime \prime }}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
Substitute, the values of \(J_1^{\prime \prime }(x),J_1^\prime (x)\) and \({J_1}(x)\) in \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0\)
\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{{x^2}\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + x\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {{x^2} - 1} \right)\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\end{aligned}} \right)\)
\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{{x^2}\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + x\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {{x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} } \right)}\end{aligned}} \right)\)
\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 3}}}}{{n!(n + 1)!{2^{2n + 1}}}}} - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} } \right)}\end{aligned}} \right)\)
\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \sum\limits_{n = 0}^\infty {\left\{ {\frac{{\begin{aligned}{*{20}{l}}{{{( - 1)}^n}2n(2n + 1){x^{2n + 1}} + {{( - 1)}^n}(2n + 1){x^{2n + 1}}}\\{ + {{( - 1)}^n}{x^{2n + 1}} - {{( - 1)}^n}{x^{2n + 1}}}\end{aligned}}}{{n!(n + 1)!{2^{2n + 1}}}}} \right\}} \)
Simplify the value.
\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {(2n)(2n + 1) + (2n + 1) + {x^2} - 1} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 2n + 2n + 1 + {x^2} - 1} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n + {x^2}} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} + {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)
Explain the term of the series.
x2J"1(x)+xJ'1(x)+(x2-1)J1(x) = \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}(4{n^2} + 4n)}}{{n!(n + 1)!{2^{2n + 1}}}} + {x^2}{J_1}(x)} \)
Consider the summation part \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \),
\(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} = 0 - \frac{{{x^3}}}{2} + \frac{{{x^5}}}{{16}} - \frac{{{x^7}}}{{384}} + \frac{{{x^9}}}{{18432}} \cdots \)
Compare into the \({J_1}(x)\)
\(\begin{aligned}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= \frac{x}{2} - \frac{{{x^3}}}{{16}} + \frac{{{x^5}}}{{384}} - \frac{{{x^7}}}{{18432}} + \cdots \\\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= - {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \\\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= - {x^2}{J_1}(x)\end{aligned}\)\(\begin{aligned}{l}{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} + {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \\{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= - {x^2}{J_1}(x) + {x^2}{J_1}(x)\\{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= 0\end{aligned}\)
Therefore. the function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \) satisfies the differential equation. \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0.\)
Differentiate the function \({J_0}(x)\).
(b)
Let, \({J_0}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n}}}}{{{2^{2n}}{{(n!)}^2}}}} \),
\(J_0^\prime (x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \)
Expand the function.
Function is \(J_0^\prime (x)\),
\(\begin{aligned}J_0^\prime (x) &= \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \\J_0^\prime (x) &= 0 - \frac{x}{2} + \frac{{{x^3}}}{{16}} - \frac{{{x^5}}}{{385}} + \cdots \\ - {J_1}(x) &= - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \\ - {J_1}(x) &= \left( {\frac{x}{2} + \frac{{{x^3}}}{{16}} - \frac{{{x^5}}}{{385}} + \cdots } \right)\end{aligned}\)
Therefore, the condition \(J_0^\prime (x) = - {J_1}(x)\) is proved.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!