Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Show the function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)which satisfies the differential equation\({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0.\)

(b) Show that the \(J_0^\prime (x) = - {J_1}(x)\).

Short Answer

Expert verified

(a) The function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \) which satisfies the differential equation \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0\).

(b) The condition satisfied \({J^\prime }_0(x) = - {J_1}(x)\).

Step by step solution

01

Concept of differential equation.

Differential equations take a form similar to \(f(x) + f'(x) = 0\), where \(f'\)is “f-prime,” the derivative of \(f'\), such an equation relates a function \(f(x)\) to its derivative. In order to solve the differential equation, you must first find the function \(f(x)\).

02

Differentiate the function and substitute the values.

(a)

The function is \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

Let \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

\(J_1^\prime (x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

\({J^{\prime \prime }}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

Substitute, the values of \(J_1^{\prime \prime }(x),J_1^\prime (x)\) and \({J_1}(x)\) in \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0\)

\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{{x^2}\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + x\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {{x^2} - 1} \right)\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\end{aligned}} \right)\)

\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{{x^2}\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n - 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + x\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {{x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} } \right)}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \left( {\begin{aligned}{\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}(2n)(2n + 1){x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} + \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}(2n + 1){x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} }\\{ + \left( {\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 3}}}}{{n!(n + 1)!{2^{2n + 1}}}}} - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} } \right)}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{{x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x)}\\{ + \left( {{x^2} - 1} \right){J_1}(x)}\end{aligned}} \right)\)\( = \sum\limits_{n = 0}^\infty {\left\{ {\frac{{\begin{aligned}{*{20}{l}}{{{( - 1)}^n}2n(2n + 1){x^{2n + 1}} + {{( - 1)}^n}(2n + 1){x^{2n + 1}}}\\{ + {{( - 1)}^n}{x^{2n + 1}} - {{( - 1)}^n}{x^{2n + 1}}}\end{aligned}}}{{n!(n + 1)!{2^{2n + 1}}}}} \right\}} \)

03

Simplify the value.

\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {(2n)(2n + 1) + (2n + 1) + {x^2} - 1} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 2n + 2n + 1 + {x^2} - 1} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n + {x^2}} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

\({x^2}{J^{\prime \prime }}_1(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x)\)\( = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} + {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \)

04

Explain the term of the series.

x2J"1(x)+xJ'1(x)+(x2-1)J1(x) = \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}(4{n^2} + 4n)}}{{n!(n + 1)!{2^{2n + 1}}}} + {x^2}{J_1}(x)} \)

Consider the summation part \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} \),

\(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} = 0 - \frac{{{x^3}}}{2} + \frac{{{x^5}}}{{16}} - \frac{{{x^7}}}{{384}} + \frac{{{x^9}}}{{18432}} \cdots \)

Compare into the \({J_1}(x)\)

\(\begin{aligned}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= \frac{x}{2} - \frac{{{x^3}}}{{16}} + \frac{{{x^5}}}{{384}} - \frac{{{x^7}}}{{18432}} + \cdots \\\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= - {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \\\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} &= - {x^2}{J_1}(x)\end{aligned}\)\(\begin{aligned}{l}{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}\left( {4{n^2} + 4n} \right)}}{{n!(n + 1)!{2^{2n + 1}}}}} + {x^2}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \\{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= - {x^2}{J_1}(x) + {x^2}{J_1}(x)\\{x^2}J_1^{\prime \prime }(x) + x{J_1}(x) + \left( {{x^2} - 1} \right){J_1}(x) &= 0\end{aligned}\)

Therefore. the function \({J_1}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n + 1}}}}{{n!(n + 1)!{2^{2n + 1}}}}} \) satisfies the differential equation. \({x^2}J_1^{\prime \prime }(x) + xJ_1^\prime (x) + \left( {{x^2} - 1} \right){J_1}(x) = 0.\)

05

Differentiate the function \({J_0}(x)\).

(b)

Let, \({J_0}(x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^{2n}}}}{{{2^{2n}}{{(n!)}^2}}}} \),

\(J_0^\prime (x) = \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \)

06

Expand the function.

Function is \(J_0^\prime (x)\),

\(\begin{aligned}J_0^\prime (x) &= \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \\J_0^\prime (x) &= 0 - \frac{x}{2} + \frac{{{x^3}}}{{16}} - \frac{{{x^5}}}{{385}} + \cdots \\ - {J_1}(x) &= - \sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}2n{x^{2n - 1}}}}{{{2^{2n}}{{(n!)}^2}}}} \\ - {J_1}(x) &= \left( {\frac{x}{2} + \frac{{{x^3}}}{{16}} - \frac{{{x^5}}}{{385}} + \cdots } \right)\end{aligned}\)

Therefore, the condition \(J_0^\prime (x) = - {J_1}(x)\) is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free