Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For what values\({\rm{x}}\) does the series \(\sum {_{{\rm{n = 1}}}^{\rm{x}}{{{\rm{(lnx)}}}^{\rm{n}}}} \)converge?

Short Answer

Expert verified

Therefore, When the series converges is \(\frac{{\rm{1}}}{{\rm{e}}}{\rm{ < x < e}}\).

Step by step solution

01

Geometric series.

Keep that a geometric series with a common ratio of \({\rm{r}}\)only converges when\({\rm{|r| < 1}}\).

02

Step 2: The series converges.

Note

\(\sum\limits_{{\rm{n = 1}}}^\infty {{{{\rm{(lnx)}}}^{\rm{n}}}} \)

a typical ratio geometric series\({\rm{r = lnx}}\)

The series will converge when\({\rm{|r| = |lnx| < 1}}\)

Therefore

\(\begin{array}{c}{\rm{ - 1 < lnx < 1}}\\{{\rm{e}}^{{\rm{ - 1}}}}{\rm{ < }}{{\rm{e}}^{{\rm{lnx}}}}{\rm{ < }}{{\rm{e}}^{\rm{1}}}\\\frac{{\rm{1}}}{{\rm{e}}}{\rm{ < x < e}}\end{array}\)

When the series converges,

\(\frac{{\rm{1}}}{{\rm{e}}}{\rm{ < x < e}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free