Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the values of p for which the series is \(\sum\limits_{n = 1}^\infty {\frac{{lnn}}{{{n^p}}}} \)convergent.

Short Answer

Expert verified

The series \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \) is convergent for \(p > 1\) and divergent for \(p \le 1\).

Step by step solution

01

About Comparison test:-

Consider the series, \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \).

According to the comparison test, suppose that \(\sum {{a_n}} \)and \(\sum {{b_n}} \) are series with positive terms.

(i) If \(\sum {{b_n}} \)is convergent and \({a_n} \le {b_n}\forall n\)then \(\sum {{a_n}} \)is also convergent.

(ii) If \(\sum {{b_n}} \)I is divergent and \({a_n} \ge {b_n}\forall n\) then \(\sum {{a_n}} \)is also divergent.

(iii) For \(n \ge 3,\ln n > 1\) so for \(n \ge 3,\frac{{\ln n}}{{{n^p}}} > \frac{1}{{{n^p}}}\).

(iv) Apply comparison test, since only the eventual behavior of series determines convergence rather than the first several terms only.

The p-series \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \) is convergent if \(p > 1\) and divergent if\(p \le 1\).

02

Consider the case where \(p \le 1\):-

The series \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \) and \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \) are series of positive terms. As the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \) is a p-series with \(p \le 1\). Therefore, the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \) is convergent.

The terms of \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \) are bigger than the terms of \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^p}}}} \), \(\frac{{\ln n}}{{{n^p}}} > \frac{1}{{{n^p}}}\) for \(n \ge 3\).

\(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \)must also diverge. So, the series diverges for \(p \le 1\).

03

Consider the case where \(p > 1\):-

If \(f(x) = \frac{{\ln x}}{{{x^p}}},\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} = f(n)\).also, f is eventually decreasing. So, use the integral test. We demonstrate that f is eventually decreasing by taking its derivative withquotient rule:

\(f'(x) = \frac{{{x^p}\frac{1}{x} - \ln x.p{x^{p - 1}}}}{{{x^{2p}}}} = \frac{{{x^{p - 1}} - \ln xp{x^{p - 1}}}}{{{x^{2p}}}}\)

\( = \frac{{{x^{p - 1}}(1 - p\ln x)}}{{{x^{2p}}}}\)

The factors \({x^{p - 1}}\) and \({x^{2p}}\)are positive for positive values of x. Also \(p > 1\), for \(x \ge 3\). So, \(x \ge 3\), \(p\ln x > 1\), giving that \(0 < 1 - p\ln x\). Then for \(x \ge 3\), \(\frac{{{x^{p - 1}}(1 - p\ln x)}}{{{x^{2p}}}}\) is the product of one negative and two positive factors, therefore, negative. The integral test still applies because it is eventual behaviour of integral & series that matters for convergence, not its value from \(1 \le x \le 3\). So, f has a decreasing property that allow us to use the integral test.\(\)

04

Evaluation of integral:-

For evaluation of \(\int\limits_1^\infty {f(x)dx} \), first we compute the indefinite integral: \(\int {f(x)dx} = \int {\frac{{\ln x}}{{{x^p}}}dx} \).

Use integration by parts:-

Let \(u = \ln x,{\rm{ }}du = {x^{ - p}}dx\).

Then, \(du = \frac{1}{x}dx{\rm{, }}u = \frac{1}{{ - p + 1}}{x^{ - p + 1}}\).

Note that it’s important that \(p > 1\)so \( - p + 1 \ne 0\).

By the integration by parts, we have

\(\int {\frac{{\ln x}}{{{x^p}}}dx = \frac{{\ln x}}{{{x^p}}}{x^{ - p + 1}}} - \int {\frac{1}{{ - p + 1}}{x^{ - p + 1}}\frac{1}{x}dx} \)

\( = \frac{{\ln x}}{{ - p + 1}}.{x^{p + 1}} - \frac{1}{{{{( - p + 1)}^2}}}{x^{ - p + 1}}\)

\( = \frac{{\ln x - \frac{1}{{ - p + 1}}}}{{( - p + 1){x^{p - 1}}}}\)

Take the improper integral

\(\int\limits_1^\infty {\frac{{\ln x}}{{{x^p}}}dx} = \mathop {\lim }\limits_{t \to \infty } \int\limits_1^\infty {\frac{{\ln x}}{{{x^p}}}dx} \)

\( = \mathop {\lim }\limits_{t \to \infty } \left[ {\frac{{\ln x - \frac{1}{{ - p + 1}}}}{{( - p + 1){x^{p - 1}}}}} \right]_1^t\)

\( = \mathop {\lim }\limits_{t \to \infty } \frac{{\ln t - \frac{1}{{ - p + 1}}}}{{( - p + 1){x^{p - 1}}}} + \frac{1}{{{{( - p + 1)}^2}}}\)

The term \(\ln t \to \infty \) and since \(p > 1\), also. So, the \(\frac{1}{{ - p + 1}}\) has theindefinite form\(\frac{\infty }{{ - \infty }}\) because \(\frac{1}{{ - p + 1}}\)in the numerator and \( - p + 1\) are constants.

05

using L’Hospital’s rule:-

Apply L’Hospital’s rule,to calculate:

\( = \mathop {\lim }\limits_{t \to \infty } \frac{{\ln t - \frac{1}{{ - p + 1}}}}{{( - p + 1){t^{p - 1}}}} = \mathop {\lim }\limits_{t \to \infty } \frac{{(1/t)}}{{\frac{{ - p + 1}}{p}{t^p}}}\)

\( = \mathop {\lim }\limits_{t \to \infty } \frac{{(1/t)}}{{\frac{{ - p + 1}}{p}{t^{p + 1}}}} = 0\) [p+ 1 > 2]

So, above the limit converges to zero, and thus the main limit convergent.

\( = \mathop {\lim }\limits_{t \to \infty } \frac{{\ln t - \frac{1}{{ - p + 1}}}}{{( - p + 1){t^{p - 1}}}} + \frac{1}{{{{( - p + 1)}^2}}} = \frac{1}{{{{( - p + 1)}^2}}}\)

The integral \(\int\limits_1^\infty {\frac{{\ln x}}{{{x^p}}}dx} \) converges.

By integral test, \(\int\limits_1^\infty {\frac{{\ln x}}{{{x^p}}}dx} \) converges if & only if the series \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \)converges. Thus, the series is convergent.

Therefore, \(\sum\limits_{n = 1}^\infty {\frac{{\ln n}}{{{n^p}}}} \) is convergent for \(p > 1\) and divergent for \(p \le 1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free