Chapter 8: Q30E (page 443)
a sequences of term is defined by\({a_1} = 1an = \left( {5 - n} \right){a_{n - 1}}\).
calculate\(\sum\limits_{n = 1}^\infty {an} \).
Short Answer
\(\sum\limits_{n = 1}^\infty {an} \)=16
Chapter 8: Q30E (page 443)
a sequences of term is defined by\({a_1} = 1an = \left( {5 - n} \right){a_{n - 1}}\).
calculate\(\sum\limits_{n = 1}^\infty {an} \).
\(\sum\limits_{n = 1}^\infty {an} \)=16
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \ln (n + 1) - \ln n\)
Determine whether the geometric series is convergent or divergent. If convergent, find its sum.
\(\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{n^2}}}{{\sqrt {{n^3} + 4n} }}\)
Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?
\(\sum\limits_1^\infty {\frac{{{{( - 1)}^{n - 1}}}}{{n!}}} \)
Find the value of \(c\) if \(\sum\limits_{n = 2}^\infty {{{(1 + c)}^{ - n}} = 2} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.