Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Section 4.6 we considered Newton's method for approximating a root \({\rm{r}}\)of the equation\({\rm{f(x) = 0}}\), and from an initial approximation \({{\rm{x}}_{\rm{1}}}\) we obtained successive approximations\({{\rm{x}}_{\rm{2}}}{\rm{,}}{{\rm{x}}_{\rm{3}}}{\rm{, \ldots }}\), where

\({{\rm{x}}_{{\rm{n + 1}}}}{\rm{ = }}{{\rm{x}}_{\rm{n}}}{\rm{ - }}\frac{{{\rm{f}}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{{{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}\)

Use Taylor's Formula with \({\rm{n = 1,a = }}{{\rm{x}}_{\rm{n}}}\)and\({\rm{x = r}}\)to show that if \({{\rm{f}}^{''}}{\rm{(x)}}\) exists on an interval \({\rm{I}}\)containing \({\rm{r,}}{{\rm{x}}_{\rm{n}}}\), and\({{\rm{x}}_{{\rm{n + 1}}}}\), and , then

(This means that if \({{\rm{x}}_{\rm{n}}}\)is accurate to d decimal places, then\({{\rm{x}}_{{\rm{n + 1}}}}\)is accurate to \({{\rm{x}}_{{\rm{n + 1}}}}\)about \({\rm{2d}}\)decimal places. More precisely, if the error at stage n is at most\({\rm{1}}{{\rm{0}}^{{\rm{ - m}}}}\), then the error at stage \({\rm{n + 1}}\)is at most\({\rm{(M/2K)1}}{{\rm{0}}^{{\rm{ - 2m}}}}\).)

Short Answer

Expert verified

Hence, the given statement is verified.

Step by step solution

01

Concept Introduction

In any term finite Taylor series approximation, Taylor's inequality is an estimate result for the value of the remainder term. Indeed, if there exists a real number satisfying on some interval for any function that meets the hypotheses of Taylor's theorem, the remainder satisfies.

02

Step 2:Calculation

Consider the given values and simplify,

To begin, we have:

\(\begin{aligned}{}{\rm{f(x) = }}{{\rm{T}}_{\rm{1}}}{\rm{(x) + }}{{\rm{R}}_{\rm{1}}}{\rm{(x)}}\\ \Rightarrow {\rm{f(r) = }}{{\rm{T}}_{\rm{1}}}{\rm{(r) + }}{{\rm{R}}_{\rm{1}}}{\rm{(r)}}\end{aligned}\)

We also have the following:

\(\begin{aligned}{}{{\rm{T}}_{\rm{1}}}{\rm{(x) = f(a) + }}{{\rm{f}}'}{\rm{(a)(x - a)}}\\ \Rightarrow {{\rm{R}}_{\rm{1}}}{\rm{(x) = f(x) - f(a) - }}{{\rm{f}}'}{\rm{(a)(x - a)}}\end{aligned}\)

Now, let's use the substitutions \({\rm{a = }}{{\rm{x}}_{\rm{n}}}\)and\({\rm{x = r}}\), as indicated. Furthermore, for any \({{\rm{f}}^{''}}{\rm{(x)}}\) exist on an interval I containing \({\rm{r,}}{{\rm{x}}_{\rm{n}}}\), and\({{\rm{x}}_{{\rm{n + 1}}}}\), and\(\left| {{{\rm{f}}^{''}}{\rm{(x)}}} \right|{\rm{£ M,}}\left| {{{\rm{f}}'}{\rm{(x)}}} \right| \ge {\rm{K}}\) for all \({\rm{x}} \in {\rm{I}}\).

Using the fact that r is a root of the equation f(x)=0, we may derive the following:

\(\begin{aligned}{}{{\rm{R}}_{\rm{1}}}{\rm{(r) = f(r) - f}}\left( {{{\rm{x}}_{\rm{n}}}} \right){\rm{ - }}{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)\left( {{\rm{r - }}{{\rm{x}}_{\rm{n}}}} \right){\rm{ = - f}}\left( {{{\rm{x}}_{\rm{n}}}} \right){\rm{ - }}{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)\left( {{\rm{r - }}{{\rm{x}}_{\rm{n}}}} \right){\rm{ = }}{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)\left( {{{\rm{x}}_{\rm{n}}}{\rm{ - r}}} \right){\rm{ - f}}\left( {{{\rm{x}}_{\rm{n}}}} \right)\\\frac{{{{\rm{R}}_{\rm{1}}}{\rm{(r)}}}}{{{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{\rm{ = }}\left( {{{\rm{x}}_{\rm{n}}}{\rm{ - r}}} \right){\rm{ - }}\frac{{{\rm{f}}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{{{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{\rm{ = }}{{\rm{x}}_{\rm{n}}}{\rm{ - }}\frac{{{\rm{f}}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{{{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}{\rm{ - r = }}{{\rm{x}}_{{\rm{n + 1}}}}{\rm{ - r}}\;\;\;\left( {{\rm{ Since }}\left| {{{\rm{f}}'}{\rm{(x)}}} \right|{\rm{ > K > 0}}} \right)\\\left| {\frac{{{{\rm{R}}_{\rm{1}}}{\rm{(r)}}}}{{{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)}}} \right|{\rm{ = }}\left| {{{\rm{x}}_{{\rm{n + 1}}}}{\rm{ - r}}} \right| \Rightarrow \left| {{{\rm{R}}_{\rm{1}}}{\rm{(r)}}} \right|{\rm{ = }}\left| {{{\rm{x}}_{{\rm{n + 1}}}}{\rm{ - r}}} \right|{\rm{ \times }}\left| {{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)} \right|\end{aligned}\)

Using Taylor's inequality, we now obtain the following:

\(\begin{aligned}{}{\rm{ |}}{{\rm{R}}_{\rm{1}}}{\rm{(r)|}} \le \frac{{\rm{M}}}{{{\rm{2!}}}}{\left| {{\rm{r - }}{{\rm{x}}_{\rm{n}}}} \right|^{\rm{2}}}\\\left| {{{\rm{x}}_{{\rm{n + 1}}}}{\rm{ - r}}} \right|{\rm{ \times }}\left| {{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)} \right|{\rm{ \& £ }}\frac{{\rm{M}}}{{\rm{2}}}{\left| {{{\rm{x}}_{\rm{n}}}{\rm{ - r}}} \right|^{\rm{2}}}\\\left| {{{\rm{x}}_{{\rm{n + 1}}}}{\rm{ - r}}} \right| \le \frac{{\rm{M}}}{{{\rm{2}}\left| {{{\rm{f}}'}\left( {{{\rm{x}}_{\rm{n}}}} \right)} \right|}}{\left| {{{\rm{x}}_{\rm{n}}}{\rm{ - r}}} \right|^{\rm{2}}} \le \frac{{\rm{M}}}{{{\rm{2K}}}}{\left| {{{\rm{x}}_{\rm{n}}}{\rm{ - r}}} \right|^{\rm{2}}}\end{aligned}\)

Therefore, we use the definition of \({{\rm{R}}_{\rm{1}}}{\rm{(x)}}\) and Taylor's inequality, we can prove the inequality with some mathematical manipulation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When money is spent on goods and services, those who receive the money also spend some of it. The people receiving some of the twice-spent money will spend some of that, and so on. Economists call this chain reaction the multiplier effect. In a hypothetical isolated community, the local government begins the process by spending \(D\) dollars. Suppose that each recipient of spent money spends \(100c\% \) and saves \(100s\% \) of the money that he or she receives. The values \(c\) and \(s\)are called themarginal propensity to consume and themarginal propensity to saveand, of course, \(c + s = 1\).

(a) Let \({S_n}\) be the total spending that has been generated after \(n\) transactions. Find an equation for \({S_n}\).

(b) Show that \(\mathop {\lim }\limits_{n \to \infty } {S_n} = kD\), where \(k = \frac{1}{s}\). The number \(k\) is called the multiplier. What is the multiplier if the marginal propensity to consume is \(80\% \)?

Note: The federal government uses this principle to justify deficit spending. Banks use this principle to justify lending a large percentage of the money that they receive in deposits.

If the nth partial sum of a series \(\sum\limits_{n = 1}^\infty {{a_n}} \) is \({s_n} = 3 - n{2^{ - n}}\), find \({a_n}\)and \(\sum\limits_{n = 1}^\infty {{a_n}} \).

Determine whether the sequence converges or diverges. If it converges, find the limit.

\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)

\(\sum\limits_{n = 1}^\infty {\frac{{1 + {2^n}}}{{{3^n}}}} \) find whether it is convergent or divergent and find its sum if it is convergent.

Determine whether the sequence converges or diverges. If it converges, find the limit.

\({a_n} = \frac{{{{( - 1)}^n}}}{{2\sqrt n }}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free