Chapter 8: Q29E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({\bf{\{ 0,1,0,0,1,0,0,0,1, \ldots \ldots \ldots \ldots \ldots \} }}\)
Short Answer
Diverges
Chapter 8: Q29E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({\bf{\{ 0,1,0,0,1,0,0,0,1, \ldots \ldots \ldots \ldots \ldots \} }}\)
Diverges
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {\left( {1 + \frac{2}{n}} \right)^n}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\tan }^{ - 1}}n}}{n}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{( - 1)}^n}}}{{2\sqrt n }}\)
Find Whether \(\sum\limits_{n = 1}^\infty {\sqrt[n](2)} \) Is Convergent (Or) Divergent. If It Is Convergent Find The Summation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.