Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the sum of the series.

\(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 3}}} \right)}}} \)

Short Answer

Expert verified

The sum of the series is\(\frac{{{\rm{11}}}}{{{\rm{18}}}}\).

Step by step solution

01

Expand the equation.

Dissolve the partial fractions.

\(\begin{array}{c}\frac{{\rm{1}}}{{{\rm{n(n + 3)}}}}{\rm{ = }}\frac{{\rm{A}}}{{\rm{n}}}{\rm{ + }}\frac{{\rm{B}}}{{{\rm{n + 3}}}}\\{\rm{1 = A(n + 3) + Bn}}\\{\rm{ if n = 0:}}\;\;\;{\rm{1 = A(0 + 3) + 0}}\;\;\;{\rm{A = }}\frac{{\rm{1}}}{{\rm{3}}}\\{\rm{if n = - 3:}}\;\;\;{\rm{1 = 0 + B( - 3)}}\;\;\;{\rm{B = - }}\frac{{\rm{1}}}{{\rm{3}}}\frac{{\rm{1}}}{{{\rm{n(n + 3)}}}}\\{\rm{ = }}\frac{{{\rm{1/3}}}}{{\rm{n}}}{\rm{ - }}\frac{{{\rm{1/3}}}}{{{\rm{n + 3}}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {\frac{{\rm{1}}}{{\rm{n}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{n + 3}}}}} \right)\end{array}\)

02

Find the sum of the series.

As you write down certain terms, you'll see that it's a telescoping sum.

\(\begin{array}{c}\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\rm{1}}}{{{\rm{n(n + 3)}}}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {\frac{{\rm{1}}}{{\rm{1}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{7}}}{\rm{ + }} \cdot \cdot \cdot {\rm{ + }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{n + 3}}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{\rm{1 + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ + }} \cdot \cdot \cdot {\rm{ + }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{n + 3}}}}} \right)\end{array}\)

\({\rm{1 + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{3}}}\)Because has no negative equivalent to canceling out, it stays while the rest of the fractions cancel out.

\(\begin{array}{c}\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\rm{1}}}{{{\rm{n(n + 3)}}}}} {\rm{ = }}\mathop {{\rm{lim}}}\limits_{{\rm{n}} \to \infty } \frac{{\rm{1}}}{{\rm{3}}}\left( {{\rm{1 + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{n + 3}}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {{\rm{1 + }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ + 0 - 0}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {\frac{{{\rm{6 + 3 + 2}}}}{{\rm{6}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{3}}}\left( {\frac{{{\rm{11}}}}{{\rm{6}}}} \right)\\{\rm{ = }}\frac{{{\rm{11}}}}{{{\rm{18}}}}\end{array}\)

Therefore, the sum of the series is\(\frac{{{\rm{11}}}}{{{\rm{18}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free