Chapter 8: Q26E (page 469)
(a) Determine the power series \(\sum\limits_{n = 0}^\infty {{x^n}} \) with interval of convergence\((p,q)\).
(b) Determine the power series \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{n}} \) with interval of convergence\((p,q)\).
(c) Determine the power series \(\sum\limits_{n = 0}^\infty {\frac{{{x^n}}}{n}} \)with interval of convergence\((p,q)\).
(d) Determine the power series \(\sum\limits_{n = 0}^\infty {\frac{{{x^n}}}{{{n^2}}}} \) with interval of convergence\((p,q)\).
Short Answer
(a) Thepower series with the interval of convergence\((p,q)\)is\(\sum\limits_{n = 0}^\infty {{{\left( {\frac{{x - m}}{R}} \right)}^n}} \).
(b) The power series with the interval of convergence\((p,q)\)is\(\sum\limits_{n = 0}^\infty {{{( - 1)}^n}} \frac{1}{n}{\left( {\frac{{x - m}}{R}} \right)^n}\).
(c)The power series with the interval of convergence\((p,q)\)is\(\sum\limits_{n = 0}^\infty {\frac{1}{n}} \left( {\frac{{x - m}}{R}} \right)\).
(d)The desired series with the interval of convergence (p, q) is\(\sum\limits_{n = 0}^\infty {\frac{1}{{{n^2}}}} {\left( {\frac{{x - m}}{R}} \right)^n}\).