Chapter 8: Q25E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\cos }^2}n}}{{{2^n}}}\)
Short Answer
Converges &\(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\)
Chapter 8: Q25E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\cos }^2}n}}{{{2^n}}}\)
Converges &\(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the geometric series is convergent or divergent..If it is convergent,find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{{{( - 3)}^{n - 1}}}}{{{4^n}}}} \)
\(\sum\limits_{n = 1}^\infty {\frac{{1 + {2^n}}}{{{3^n}}}} \) find whether it is convergent or divergent and find its sum if it is convergent.
Find the values of p for which series is convergent :\(\sum\limits_{n = 2}^\infty {\frac{1}{{n{{(lnn)}^p}}}} \)
Prove Theorem 6. (Hint: Use either definition 2 or the squeeze Theorem).
What can you say about the series \(\sum {{a_n}} \) in each of the following cases?
(a) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 8\)
(b) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 0.8\)
(c) \(\mathop {lim}\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.