Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the radius of convergence of given series.

\(\sum\limits_{n = 0}^\infty {\frac{{{{(n!)}^k}}}{{(kn!)}}} {x^n}\)

Short Answer

Expert verified

The radius of convergence of given series is\(R = {k^k}\).

Step by step solution

01

Ratio test

For any series\(\sum {{a_n}} \), define\(L = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right|\).

If\(L < 1\), the series is absolutely convergent, if\(L > 1\), the series is divergent and if\(L = 1\)the series may be divergent, conditionally convergent or absolutely convergent.

As given, the series is\(\sum\limits_{n = 0}^\infty {\frac{{{{(n!)}^k}}}{{(kn!)}}} {x^n}\)

02

Find the ratio for the ratio Test

\(\begin{aligned}{a_n} &= \frac{{{{(n!)}^k}}}{{(kn)!}}{x^n}\\{a_{n + 1}} &= \frac{{{{((n + 1)!)}^k}}}{{(k(n + 1))!}}{x^{n + 1}}\end{aligned}\)

\(\begin{aligned}\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{\frac{{{{((n + 1)!)}^k}{x^{n + 1}}}}{{(k(n + 1))!}}}}{{\frac{{{{(n!)}^k}}}{{(kn)!}}{x^n}}}\\\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{{{((n + 1)!)}^k}{x^{n + 1}}}}{{(k(n + 1))!}} \cdot \frac{{(kn)!}}{{{{(n!)}^k}{x^n}}}\\\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{{{((n + 1)n!)}^k}{x^{n + 1}}}}{{(kn + k)!}} \cdot \frac{{(kn)!}}{{{{(n!)}^k}{x^n}}}\\\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{{{(n + 1)}^k}x(kn)!}}{{(kn + k)!}}\\\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{{{(n + 1)}^k}x(kn)!}}{{(kn + k)(kn + k - 1)(kn + k - 2) \cdots (kn + 1)(kn)!}}\\\frac{{{a_{n + 1}}}}{{{a_n}}} &= \frac{{{{(n + 1)}^k}x}}{{(kn + k)(kn + k - 1)(kn + k - 2) \cdots (kn + 1)}}\end{aligned}\)

03

Do the Ratio Test

\(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{(n + 1)}^k}x}}{{(kn + k)(kn + k - 1)(kn + k - 2) \cdots (kn + 1)}} \cdot \frac{{\frac{1}{{{n^k}}}}}{{\frac{1}{{{n^k}}}}}} \right|\)

\( = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left( {1 + \frac{1}{n}} \right)}^k}|x|}}{{\left( {k + \frac{k}{n}} \right)\left( {k + \frac{k}{n} - \frac{1}{n}} \right)\left( {k + \frac{k}{n} - \frac{2}{n}} \right) \cdots \left( {k + \frac{1}{n}} \right)}}\)

\( = \frac{{{{(1 + 0)}^k}|x|}}{{(k + 0)(k + 0 - 0)(k + 0 - 0) \cdots (k + 0)}}\)

\( = \frac{{|x|}}{{{k^k}}}\)

The series converges if the result of the Ratio Test is \( < 1\) so solve that for \(x\)

\(\begin{aligned}{\frac{{|x|}}{{{k^k}}} < 1}\\{|x| < {k^k}}\\{ - {k^k} < x < {k^k}}\end{aligned}\)

The interval of convergence is half the width of the interval

\(\begin{aligned}R &= \frac{{{k^k} - \left( { - {k^k}} \right)}}{2}\\R &= \frac{{2{k^k}}}{2}\\R &= {k^k}\end{aligned}\)

Hence, the radius of convergence of given series is\(R = {k^k}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Use the sum of the first 10 terms and Exercise 33(a) to estimate the sum of the series\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) . How good is this estimate?

(b) Improve this estimate using Exercise 33(b) with n = 10

(c) Find a value of n that will ensure that the error in the approximation \(S \approx {S_n}\) is less than 0.01


Find the first 40 terms of the sequence defined by\({a_{n + 1}} = \left\{ {\begin{aligned}{\frac{1}{2}{a_n}}&{{\rm{ if }}{a_n}{\rm{ is an even number }}}\\{3{a_n} + 1}&{{\rm{ if }}{a_n}{\rm{ is an odd number }}}\end{aligned}} \right.;{a_1} = 11\).

Do the same if\({a_1} = 25\). Make a conjecture about this type of sequence

Determine whether the sequence converges or diverges. If it converges, find the limit.

\({a_n} = {2^{ - n}}\cos n\pi \)

Let S be the sum of a series of \(\sum {{a_n}} \) that has shown to be convergent by the Integral Test and let f(x) be the function in that test. The remainder after n terms is

\({R_n} = S - {S_n} = {a_{n + 1}} + {a_{n + 2}} + {a_{n + 3}} + .......\)

Thus, Rn is the error made when Sn , the sum of the first n terms is used as an approximation to the total sum S.

(a) By comparing areas in a diagram like figures 3 and 4 (but with x โ‰ฅ n), show that

\(\int\limits_{n + 1}^\infty {f(x)dx \le {R_n} \le \int\limits_n^\infty {f(x)dx} } \)

(b) Deduce from part (a) that

\({S_n} + \int\limits_{n + 1}^\infty {f(x)dx \le S \le {S_n} + \int\limits_n^\infty {f(x)dx} } \)

(a) Use a graph of\(y = \frac{1}{x}\)to show that if\({S_n}\)is the\({n^{th}}\)partial sum of the harmonic series, then\({S_n} \le 1 + \ln n\).

(b) The harmonic series diverges, but very slowly. Use part(a) to show that the sum of the first million term is less than\(15\)and the sum of the first billion terms is less than\(22\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free