Chapter 8: Q23E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {n^2}{e^{ - n}}\)
Short Answer
Converges &\(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\)
Chapter 8: Q23E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {n^2}{e^{ - n}}\)
Converges &\(\mathop {\lim }\limits_{n \to \infty } {a_n} = 0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\left( { - 1} \right)}^n}n}}{{n + \sqrt n }}\)
\(\sum\limits_{n = 2}^\infty {\ln \frac{n}{{n + 1}}} \)
Find Whether \(\sum\limits_{n = 1}^\infty {\sqrt[n](2)} \) Is Convergent (Or) Divergent. If It Is Convergent Find The Summation.
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \sqrt {\frac{{n + 1}}{{9n + 1}}} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.