Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question\(\sum\limits_{n = 0}^\infty {\frac{{{x^{2n}}}}{{(2n)!}}} {\rm{ }}\)

Prove the series expansion represents \(\cosh x\) for all \(x.\)

Short Answer

Expert verified

The proving is stated below.

Step by step solution

01

The Taylor’s inequality and squeeze theorem. 

  1. Taylor’s inequality: If\(\left| {{f^{(n + 1)}}(x)} \right| \le M\)for\(|x - a| \le d\), then the remainder\({\rm{Rn(x)}}\)for the Taylor series satisfies the inequality\(\left| {{R_n}(x)} \right| \le \frac{M}{{(n + I)!}}|x - a{|^{n + I}}\)for\(|x - a| \le d\).
  2. For every real number\(x,\mathop {\lim }\limits_{n \to \infty } \frac{{{x^n}}}{{n!}} = 0\).
  3. Squeeze theorem: If\({x_n} \le {z_n} \le {y_n}{\rm{ for }}n \ge N\)and\(\mathop {\lim }\limits_{n \to \infty } {x_n} = \mathop {\lim }\limits_{n \to \infty } {y_n} = L,\)then the value of\(\mathop {\lim }\limits_{n \to \infty } {z_n}\)is\(L\).
  4. If\({\rm{f(x) = Tn(x) + Rn(x)}}\), where\({\rm{Tn}}\)is\({\rm{nth}}\)degree Taylor polynomial for\({\rm{f}}\)at\({\rm{a}}\)and\(\mathop {\lim }\limits_{n \to \infty } \left| {{R_n}(x)} \right| = 0\)for\({\rm{|x - a| < R}}\), then\({\rm{f}}\)is equal to the sum of its Taylor series on the interval\({\rm{|x - a| < R}}\).
02

Use the Taylor’s inequality and squeeze theorem for calculation.

The derivatives of the function, \(f(x) = \cosh x\)is tabulated below.

\(n\)

\({f^n}(x)\)

\({f^n}(0)\)

\(0\)

\(\cosh x\)

\(1\)

\(1\)

\(\sinh x\)

\(0\)

\(2\)

\(\cosh x\)

\(1\)

\(3\)

\(\sinh x\)

\(0\)

\(4\)

\(\cosh x\)

\(1\)

\( \vdots \)

\( \vdots \)

\( \vdots \)

In the above table, it can be concluded that \({f^{(n + 1)}}(x) = \cosh x\) or\({\rm{ }}\sinh x\).

Since \(|\sinh x| < |\cosh x| = \cosh x{\rm{ }}\)for all\(x\), for each case \(\left| {{f^{(n + 1)}}(x)} \right| \le \cosh x\)for all \(n\).

If \(d\)is any positive number and\({\rm{|x| < d}}\), then \(\left| {{f^{(n + 1)}}(x)} \right| \le \cosh x \le \cosh d\).

Here, \(M = \cosh d\).

Thus, by the result (1) stated above, \(\left| {{R_n}(x)} \right| \le \frac{{\cosh d}}{{(n + 1)!}}|x - 0{|^{n + 1}}.\)

Since \(0 \le \left| {{R_n}(x)} \right| \le \frac{{\cosh d}}{{(n + 1)!}}|x{|^{n + 1}},\) apply the squeeze theorem and obtain the required relation.

\(\begin{aligned}{l}\mathop {\lim }\limits_{n \to \infty } 0 \le \mathop {\lim }\limits_{n \to \infty } \left| {{R_n}(x)} \right| \le \mathop {\lim }\limits_{n \to \infty } \frac{{\cosh d}}{{(n + 1)!}}|x{|^{n + 1}}\\0 \le \mathop {\lim }\limits_{n \to \infty } \left| {{R_n}(x)} \right| \le \mathop {\lim }\limits_{n \to \infty } \frac{{\cosh d}}{{(n + 1)!}}|x{|^{n + 1}}\end{aligned}\)

Obtain the limit \(\mathop {\lim }\limits_{n \to \infty } \frac{1}{{(n + 1)!}}|x{|^{n + 1}}\) by the result (2) stated above.

\(\mathop {\lim }\limits_{n \to \infty } \frac{{|x{|^{n + 1}}}}{{(n + 1)!}} = 0\)

Compute \(\mathop {\lim }\limits_{n \to \infty } \frac{{\cosh d}}{{(n + 1)!}}|x{|^{n + 1}}.\)

\(\begin{aligned}{l}\mathop {\lim }\limits_{n \to \infty } \frac{{\cosh d}}{{(n + 1)!}}|x{|^{n + 1}} = \cosh d(0)\\ = 0\end{aligned}\)

Thus, the squeeze theorem, \(\mathop {\lim }\limits_{n \to \infty } \left| {{R_n}(x)} \right| = 0.\)

That is, \(\left| {{R_n}(x)} \right| \to 0{\rm{ as }}n \to \infty {\rm{ for }}|x| \le d\) where \(d\) is a positive arbitrary number.

Since \(\mathop {\lim }\limits_{n \to \infty } \left| {{R_n}(x)} \right| = 0,\)it can be concluded that the sum is equal to its Taylor series.

Hence, the given series expansion represents \(\cosh x\) for all \(x.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free