Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the radius of convergence and interval of convergence of the series.\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}{x^n}}}{{2.4.6 \ldots (2n)}}} \)

Short Answer

Expert verified

\(R = \infty \) and \(l = ( - \infty ,\infty )\)is the radius of converges and interval of convergence, respectively.

Step by step solution

01

Ratio test

Ratio test

If\(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = L < 1\)then the series\(\sum\limits_{n = 1}^\infty {{a_n}} \)is absolutely convergent.

As given, the series is\(\sum\limits_{n = 1}^\infty {\frac{{{n^2}{x^n}}}{{2.4.6 \ldots (2n)}}} \)

\(\begin{aligned}{\rm{Let }}{a_n} = \frac{{{n^2}{x^n}}}{{2 \cdot 4.6 \ldots (2n)}}\\{a_n} &= \frac{{{n^2}{x^n}}}{{{2^n}n!}}\\{a_n} = \frac{{{n^2}{x^n}}}{{{2^n}(n - 1)!n}}\\{a_n} &= \frac{{n{x^n}}}{{{2^n}(n - 1)!}}\end{aligned}\)

Then,

\({a_{n + 1}} = \frac{{(n + 1){x^{n + 1}}}}{{{2^{n + 1}}((n + 1) - 1)!}}\).

\(\left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \left| {\frac{{\frac{{(n + 1){x^{n + 1}}}}{{{2^{n + 1(n + 1 - 1)!}}}}}}{{\frac{{n{n^n}}}{{2{n^n}(1)!}}}}} \right|\)

02

Take \(\mathop {\lim }\limits_{n \to \infty } \)on both sides 

Take \(\mathop {\lim }\limits_{n \to \infty } \) on both sides,

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| &= \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{\frac{{{{(n + 1)}^{n + 1}}}}{{{2^{n + 1}}(n + 1 - 1)!}}}}{{\frac{{nnn}}{{{2^n}(n - 1)!}}}}} \right|\\\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| &= \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1){x^{n + 1}}}}{{{2^{n + 1}}(n)!}} \cdot \frac{{{2^n}(n - 1)!}}{{n{x^n}}}} \right|\\\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| &= \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1){x^{n + 1}}}}{{{2^{n + 1}}n(n - 1)!}} \cdot \frac{{{2^n}(n - 1)!}}{{n{x^n}}}} \right|\\\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right| &= \mathop {\lim }\limits_{n \to \infty } \frac{{|x|}}{2} \cdot \left( {\frac{{n + 1}}{{{n^2}}}} \right)\end{aligned}\)

Simplify the above equation,

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } \frac{{|x|}}{2} \cdot \left( {\frac{{n + 1}}{{{n^2}}}} \right) &= \frac{{|x|}}{2}\left( {\frac{1}{\infty } + \frac{1}{\infty }} \right)\\\mathop {\lim }\limits_{n \to \infty } \frac{{|x|}}{2} \cdot \left( {\frac{{n + 1}}{{{n^2}}}} \right) &= \frac{{|x|}}{2}(0)\\\mathop {\lim }\limits_{n \to \infty } \frac{{|x|}}{2} \cdot \left( {\frac{{n + 1}}{{{n^2}}}} \right) &= 0\\\mathop {\lim }\limits_{n \to \infty } \frac{{|x|}}{2} \cdot \left( {\frac{{n + 1}}{{{n^2}}}} \right) < 1\end{aligned}\)

By the Ratio test stated above, the series \(\sum\limits_{n = 1}^\infty {\frac{{{n^2}{x^n}}}{{2.4.6 \ldots (2n)}}} \) is converges for all real\(x\).

Therefore, \(R = \infty \) and \(l = ( - \infty ,\infty )\)is the radius of converges and interval of convergence, respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free