Chapter 8: Q21E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)
Short Answer
Converges
Chapter 8: Q21E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \left\{ {\frac{{(2n - 1)!}}{{(2n + 1)!}}} \right\}\)
Converges
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the series is convergent or divergent:\(\sum\limits_{n = 0}^\infty {\frac{{1 + \sin n}}{{{{10}^n}}}} \).
Suppose you know that\(\left\{ {{{\bf{a}}_{\bf{n}}}} \right\}\)is a decreasing sequence and all its terms lie between the numbers 5 and 8 . Explain why the sequence has a limit. What can you say about the value of the limit?
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \ln \left( {2{n^2} + 1} \right) - \ln \left( {{n^2} + 1} \right)\)
\(\sum\limits_{n = 2}^\infty {\frac{2}{{{n^2} - 1}}} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \cos \left( {\frac{n}{2}} \right).\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.