Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether the series is convergent or divergent.

\(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\sqrt {{\rm{n + 1}}} {\rm{ - }}\sqrt {{\rm{n - 1}}} }}{{\rm{n}}}} \)

Short Answer

Expert verified

The series is convergent.

Step by step solution

01

To use the comparison test.

The \({\rm{p - }}\)series \(\sum\nolimits_{{\rm{n = 1}}}^\infty {{\textstyle{{\rm{1}} \over {{{\rm{n}}^{\rm{p}}}}}}} \)is convergent if \({\rm{p}} \succ {\rm{1}}\)and divergent if\({\rm{p}} \le {\rm{1}}\).

02

Find out if the series is convergent or divergent.

\(\begin{array}{c}{{\rm{a}}_{\rm{n}}}{\rm{ = }}\frac{{\sqrt {{\rm{n + 1}}} {\rm{ - }}\sqrt {{\rm{n - 1}}} }}{{\rm{n}}}\\{\rm{ = }}\frac{{{\rm{(}}\sqrt {{\rm{n + 1}}} {\rm{ - }}\sqrt {{\rm{n - 1}}} {\rm{)(}}\sqrt {{\rm{n + 1}}} {\rm{ + }}\sqrt {{\rm{n - 1}}} {\rm{)}}}}{{{\rm{n(}}\sqrt {{\rm{n + 1}}} {\rm{ + }}\sqrt {{\rm{n - 1}}} {\rm{)}}}}\\{\rm{ = }}\frac{{{\rm{(n + 1) - (n - 1)}}}}{{{\rm{n(}}\sqrt {{\rm{n + 1}}} {\rm{ + }}\sqrt {{\rm{n - 1}}} {\rm{)}}}}\\{\rm{ = }}\frac{{\rm{2}}}{{{\rm{n(}}\sqrt {{\rm{n + 1}}} {\rm{ + }}\sqrt {{\rm{n - 1}}} {\rm{)}}}}\\{\rm{(1) < }}\frac{{\rm{2}}}{{{\rm{n}}\sqrt {{\rm{n + 1}}} }}{\rm{ }}\\{\rm{(2) < }}\frac{{\rm{2}}}{{{\rm{n}}\sqrt {\rm{n}} }}{\rm{ = }}\frac{{\rm{2}}}{{{{\rm{n}}^{{\rm{3/2}}}}}}\end{array}\)

The series is thus convergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free