Chapter 8: Q20RE (page 498)
Determine whether the series is convergent or divergent.
\(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\sqrt {{\rm{n + 1}}} {\rm{ - }}\sqrt {{\rm{n - 1}}} }}{{\rm{n}}}} \)
Short Answer
The series is convergent.
Chapter 8: Q20RE (page 498)
Determine whether the series is convergent or divergent.
\(\sum\limits_{{\rm{n = 1}}}^\infty {\frac{{\sqrt {{\rm{n + 1}}} {\rm{ - }}\sqrt {{\rm{n - 1}}} }}{{\rm{n}}}} \)
The series is convergent.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {2^{ - n}}\cos n\pi \)
Determine whether the series is convergent or divergent. If its convergent, find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{(n - 1)}}{{(3n - 1)}}} \)
Find Whether \(\sum\limits_{n = 1}^\infty {\sqrt[n](2)} \) Is Convergent (Or) Divergent. If It Is Convergent Find The Summation.
Determine whether the series is convergent or divergent:\(\sum\limits_{n = 0}^\infty {\frac{{1 + \sin n}}{{{{10}^n}}}} \).
Determine whether the series is convergent or divergent: \(\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.