Chapter 8: Q20E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \cos \left( {\frac{2}{n}} \right)\)
Short Answer
Sequence converges and value of the limit is 1.
Chapter 8: Q20E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \cos \left( {\frac{2}{n}} \right)\)
Sequence converges and value of the limit is 1.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the values of x for which the series converges. Find the sum of the series for those values of x.
\(\sum\nolimits_{n = 0}^\infty {\frac{{{{(x - 2)}^n}}}{{{3^n}}}} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({\bf{\{ 0,1,0,0,1,0,0,0,1, \ldots \ldots \ldots \ldots \ldots \} }}\)
\(\sum\limits_{n = 2}^\infty {\frac{3}{{n\left( {n + 3} \right)}}} \)
Determine whether the geometric series is convergent or divergent..If it is convergent,find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{{{(10)}^n}}}{{{{( - 9)}^{n - 1}}}}} \)
Draw a picture to show that
\(\sum\limits_{n = 2}^\infty {\frac{1}{{\mathop n\nolimits^{1.3} }}} < \int_1^\infty {\frac{1}{{\mathop x\nolimits^{1.3} }}} dx\)
What can you conclude about the series?
What do you think about this solution?
We value your feedback to improve our textbook solutions.