Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether the series is convergent or divergent.

\(\sum\limits_{{\rm{n = 1}}}^\infty {{{\left( {{\rm{ - 1}}} \right)}^{{\rm{n - 1}}}}\frac{{\sqrt {\rm{n}} }}{{{\rm{n + 1}}}}} \)

Short Answer

Expert verified

The Alternating Series Test shows that the provided series is convergent.

Step by step solution

01

To use the Alternating Series Test.

Given:

\(\sum\limits_{{\rm{n = 1}}}^\infty {{{{\rm{( - 1)}}}^{{\rm{n - 1}}}}} \frac{{\sqrt {\rm{n}} }}{{{\rm{n + 1}}}}\)

The numerator's degree is smaller than the denominator's degree, therefore \(\frac{{\sqrt {\rm{n}} }}{{{\rm{n + 1}}}} \to {\rm{0}}\)is the same as\({\rm{n}} \to \infty \). The series converges using the Alternating Series Test because the terms are decreasing and the limit is zero.

02

Find out if the series is convergent or divergent.

It's getting smaller since the derivative of \({\rm{f(x) = }}\frac{{\sqrt {\rm{x}} }}{{{\rm{x + 1}}}}\)is negative for\({\rm{x > 1}}\).

\(\begin{array}{c}{{\rm{f}}'}{\rm{(x) = }}\frac{{\frac{{\rm{1}}}{{\rm{2}}}{{\rm{x}}{{\rm{ - 1/2}}}}{\rm{(x + 1) - }}\sqrt {\rm{x}} {\rm{(1)}}}}{{{{{\rm{(x + 1)}}}{\rm{2}}}}}{\rm{ \times }}\frac{{{\rm{2}}\sqrt {\rm{x}} }}{{{\rm{2}}\sqrt {\rm{x}} }}\\{\rm{ = }}\frac{{{\rm{(x + 1) - 2x}}}}{{{\rm{2}}\sqrt {\rm{x}} {\rm{(x + 1)}}}}\\{\rm{ = }}\frac{{{\rm{1 - x}}}}{{{\rm{2}}\sqrt {\rm{x}} {\rm{(x + 1)}}}}\end{array}\)

As a result, the Alternating Series Test shows that the provided series is convergent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free