Chapter 8: Q19E (page 443)
Find Whether \(\sum\limits_{n = 1}^\infty {\sqrt[n](2)} \) Is Convergent (Or) Divergent. If It Is Convergent Find The Summation.
Short Answer
Given \(\sum\limits_{n = 1}^\infty {\sqrt[n]{2}} = {\sum\limits_{n = 1}^\infty {(2)} ^{\frac{1}{n}}}\) \(\)
Hence\(\sum\limits_{n = 1}^\infty {\sqrt[n](2)} \) Diverges byDivergence Series Test