When we take p=0 the series become \(\sum\limits_{n = 1}^\infty {\frac{{{{\left( {{\rm{ - }}1} \right)}^{n{\rm{ - }}1}}}}{{{n^0}}} = \sum\limits_{n = 1}^\infty {{{\left( {{\rm{ - }}1} \right)}^{n{\rm{ - }}1}} = {\rm{ - }}1 + 1{\rm{ - }}1 + 1....} } \)
Where nthterm will be so \(\mathop {\lim }\limits_{n \to \infty } {a_n} = \mathop {\lim }\limits_{n \to \infty } {\left( {{\rm{ - }}1} \right)^{n - 1}}\) which does not tend to be a unique value, so \(\mathop {\lim }\limits_{n \to \infty } {\left( {{\rm{ - }}1} \right)^{n{\rm{ - }}1}}\)does not exist.