Chapter 8: Q18E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\left( { - 1} \right)}^n}n}}{{n + \sqrt n }}\)
Short Answer
Sequence diverges.
Chapter 8: Q18E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{\left( { - 1} \right)}^n}n}}{{n + \sqrt n }}\)
Sequence diverges.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the series is convergent or divergent:\(\sum\limits_{n = 0}^\infty {\frac{{1 + \sin n}}{{{{10}^n}}}} \).
Determine whether the series is convergent or divergent:\(\sum\limits_{n = 0}^\infty {\frac{{1 + \sin n}}{{{{10}^n}}}} \).
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \sqrt {\frac{{n + 1}}{{9n + 1}}} \)
\({\bf{37 - 40}}\) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
\({a_n} = n + \frac{1}{n}\)
Determine whether the geometric series is convergent or divergent..If it is convergent,find its sum.
\(10 - 2 + .4 - 0.08 + .......\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.