Chapter 8: Q17E (page 463)
Is the 50th partial sum S50 of the alternating series \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^{n - 1}}}}{n}} \) an overestimate or an underestimate of the total sum? Explain.
Short Answer
S50 is an underestimate.
Chapter 8: Q17E (page 463)
Is the 50th partial sum S50 of the alternating series \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^{n - 1}}}}{n}} \) an overestimate or an underestimate of the total sum? Explain.
S50 is an underestimate.
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sum\limits_{n = 2}^\infty {\frac{2}{{{n^2} - 1}}} \)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{{( - 3)}^n}}}{{n!}}\)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \cos \left( {\frac{n}{2}} \right).\)
Find the values of p for which the series is \(\sum\limits_{n = 1}^\infty {\frac{{lnn}}{{{n^p}}}} \)convergent.
Draw a picture to show that
\(\sum\limits_{n = 2}^\infty {\frac{1}{{\mathop n\nolimits^{1.3} }}} < \int_1^\infty {\frac{1}{{\mathop x\nolimits^{1.3} }}} dx\)
What can you conclude about the series?
What do you think about this solution?
We value your feedback to improve our textbook solutions.