Chapter 8: Q16E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \sqrt {\frac{{n + 1}}{{9n + 1}}} \)
Short Answer
The sequence converges and the limit is \(\frac{1}{3}\).
Chapter 8: Q16E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \sqrt {\frac{{n + 1}}{{9n + 1}}} \)
The sequence converges and the limit is \(\frac{1}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = {\left( {1 + \frac{2}{n}} \right)^n}\)
Find the values of p for which the series is \(\sum\limits_{n = 1}^\infty {\frac{{lnn}}{{{n^p}}}} \)convergent.
(a) Let,\({a_1} = a\),\({a_2} = f\left( a \right)\),\({a_3} = f\left( {{a_2}} \right) = f\left( {f\left( a \right)} \right)\), . . . ,\({a_{n + 1}} = f\left( {{a_n}} \right)\), where\(f\)is a continuous function. If\(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\), show that\(f\left( L \right) = L\).
(b) Illustrate part (a) by taking\(f\left( x \right) = \cos x\),\(a = 1\), andestimating the value of\(L\)to five decimal places.
Show that if we want to approximate the sum of the series\(\sum\limits_{n = 1}^\infty {{n^{ - 1.001}}} \)so that the error is less than\(5\)in the ninth decimal place, then we need to add more than\({10^{11,301}}\)terms!
Express the number as a ratio of integers. i) 10.135=10.135353535โฆ.
What do you think about this solution?
We value your feedback to improve our textbook solutions.