Chapter 8: Q15E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{n^2}}}{{\sqrt {{n^3} + 4n} }}\)
Short Answer
The sequence diverges.
Chapter 8: Q15E (page 434)
Determine whether the sequence converges or diverges. If it converges, find the limit.
\({a_n} = \frac{{{n^2}}}{{\sqrt {{n^3} + 4n} }}\)
The sequence diverges.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the geometric series is convergent or divergent. If convergent, find its sum.
\(\sum\limits_{n = 0}^\infty {\frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \)
(a)Show that if \(\mathop {\lim }\limits_{n \to \infty } {a_2}_n = L\)and \(\mathop {\lim }\limits_{n \to \infty } {a_{2n + 1}} = L,\) then {\({a_n}\)} is convergent and \(\mathop {\lim }\limits_{n \to \infty } {a_n} = L\).
(a) If \({a_1} = 1\) and
\({a_{n + 1}} = 1 + \frac{1}{{1 + {a_n}}}\)
Find the first eight terms of the sequence {\({a_n}\)}. Then use part(a) to show that \(\mathop {\lim }\limits_{n \to \infty } {a_n} = \sqrt 2 \). This gives the continued fraction expansion
\(\sqrt 2 = 1 + \frac{1}{{2 + \frac{1}{{2 + ...}}}}\)
Determine whether the series is convergent or divergent. If its convergent, find its sum.
\(\sum\limits_{n = 1}^\infty {\frac{{(1 + {3^n})}}{{{2^n}}}} \)
\({\bf{37 - 40}}\) Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?
\({a_n} = n + \frac{1}{n}\)
Find the limits of the sequences\(\left( {\sqrt 2 ,\sqrt {2\sqrt 2 } ,\sqrt {2\sqrt {2\sqrt 2 } } ,........} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.