Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the series is convergent. How many terms of the series do we need to add in order to find the sum to the indicated accuracy?

\(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{{{10}^n}n}}} \) (error \(| < 0.000005\))

Short Answer

Expert verified

Yes, the series is convergent and the number of terms we need to add is \(4\).

Step by step solution

01

Expanding the series

\(\begin{aligned}\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{{{10}^n}n!}}} &= \frac{{{{( - 1)}^0}}}{{{{10}^0} \cdot 0!}} + \frac{{{{( - 1)}^1}}}{{{{10}^1} \cdot 1!}} + \frac{{{{( - 1)}^2}}}{{{{10}^2} \cdot 2!}} + \frac{{{{( - 1)}^3}}}{{{{10}^3} \cdot 3!}} + ...\\\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}}}{{{{10}^n}n!}}} &= 1 - \frac{1}{{10}} + \frac{1}{{{{10}^2} \cdot 2!}} - \frac{1}{{{{10}^3} \cdot 3!}} + ...\end{aligned}\)

These terms are alternatively positive and negative, so it is an alternating series

02

Alternating series test:

For the given series, we have

\({b_n} = \frac{1}{{{{10}^n}n!}}\)

Consider,\({b_{n + 1}} - {b_n}\)

\(\begin{aligned}{b_{n + 1}} - {b_n} &= \frac{1}{{{{10}^{n + 1}}(n + 1)!}} - \frac{1}{{{{10}^n}n!}}\\{b_{n + 1}} - {b_n} &= \frac{1}{{{{10}^n} \cdot 10(n + 1)n!}} - \frac{1}{{{{10}^n}n!}}\end{aligned}\)

\(\begin{aligned}{b_{n + 1}} - {b_n} &= \frac{{1 - 10(n + 1)}}{{{{10}^{n + 1}}(n + 1)!}}\\{b_{n + 1}} - {b_n} &= \frac{{9 - 10n}}{{{{10}^{n + 1}}(n + 1)!}} < 0{\rm{ for all }}n \in N\end{aligned}\)

Thus \({b_{n + 1}} - {b_n} < 0\) for all \(n \in N\)

03

Checking the limit condition

\(\begin{aligned}\mathop {\lim }\limits_{n \to \infty } \left( {{b_n}} \right) &= \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{{{{10}^n}n!}}} \right)\\\mathop {\lim }\limits_{n \to \infty } \left( {{b_n}} \right) &= 0\end{aligned}\)

Since\({b_n} = \frac{1}{{{{10}^n}n!}}\), satisfies the conditions that\({b_{n + 1}} \le {b_n}\)and

\(\mathop {\lim }\limits_{n \to \infty } \left( {{b_n}} \right) = 0\).

So, the series is convergent.

04

Checking the number of terms which we need to add in order to find the sum to the indicated accuracy.

\(\begin{aligned}S &= \frac{{{{( - 1)}^0}}}{{{{10}^0} \cdot 0!}} + \frac{{{{( - 1)}^1}}}{{{{10}^1} \cdot 1!}} + \frac{{{{( - 1)}^2}}}{{{{10}^2} \cdot 2!}} + \frac{{{{( - 1)}^3}}}{{{{10}^3} \cdot 3!}} + ...\\ &= 1 - \frac{1}{{10}} + \frac{1}{{200}} - \frac{1}{{6000}} + ...\end{aligned}\)

Note that,\(\begin{aligned}{b_5} &= \frac{1}{{240000}} < \frac{1}{{200000}}\\ &= 0.00005\end{aligned}\)and

\(\begin{aligned}{S_4} &= 1 - \frac{1}{{10}} + \frac{1}{{200}} - \frac{1}{{6000}}\\ &= 1 - 0.1 + 0.005 - 0.000167\end{aligned}\)

So,

\(\begin{aligned}|{R_4}| &= |S - {S_4}|{\rm{ }} \le {\rm{ }}{{\rm{b}}_{4 + 1}}\\|{R_4}| &= {{\rm{b}}_5} < 0.000005\end{aligned}\)

So,

\(|S - {S_4}| \le {\rm{65 < 0}}{\rm{.000005}}\)

Here, the given series gives specified accuracyupto \(4\) terms

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free