Chapter 11: Q9E (page 623)
Find and sketch the domain of the function.\(f(x,y) = \frac{{\sqrt {y - {x^2}} }}{{(1 - {x^2})}}\).
Short Answer
The domain of the function \(f(x,y)\)is \(\{ (x,y)/y \ge {x^2},x \ne \pm 1\} \).
Chapter 11: Q9E (page 623)
Find and sketch the domain of the function.\(f(x,y) = \frac{{\sqrt {y - {x^2}} }}{{(1 - {x^2})}}\).
The domain of the function \(f(x,y)\)is \(\{ (x,y)/y \ge {x^2},x \ne \pm 1\} \).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the set of points at which the function is continuous: \(f(x,y) = \left\{ \begin{aligned}{l}\frac{{{x^2}{y^3}}}{{2{x^2} + {y^2}}}, if(x,y) \ne (0,0)\\1, if(x,y) = (0,0)\end{aligned} \right.\)
Find and sketch the domain of the function \(f(x,y) = \sqrt y + \sqrt {25 - {x^2} - {y^2}} \)
Draw a tree diagram of the partial derivatives of the function. The functions are\({\rm{R = f(x, y, z, t)}}\), where\({\rm{x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)}}\), and \({\rm{t = t(u, v, w)}}{\rm{.}}\)
Show the equation\(\left( {\frac{{{\partial ^2}u}}{{\partial {x^2}}}} \right) + \left( {\frac{{{\partial ^2}u}}{{\partial {y^2}}}} \right) = {e^{ - 2s}}\left( {\left( {\frac{{{\partial ^2}u}}{{\partial {s^2}}}} \right) + \left( {\frac{{{\partial ^2}u}}{{\partial {t^2}}}} \right)} \right)\) if\(u = f(x,y){\rm{,}}\) where\({\rm{ }}x = {e^s}\cos t\) and\(y = {e^s}\sin t.\)
Sketch the graph of the function \(f\left( {x,y} \right) = {e^{ - y}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.