Chapter 11: Q6E (page 623)
Find and Sketch the domain of the function.\(f(x,y) = \sqrt {xy} \)
Short Answer
The domain of the function\(f(x,y)\)is \(\{ (x,y)/(y < 0,x \le 0),(x \le 0,x \ge 0),(x \ge 0,y > 0)\} \)
Chapter 11: Q6E (page 623)
Find and Sketch the domain of the function.\(f(x,y) = \sqrt {xy} \)
The domain of the function\(f(x,y)\)is \(\{ (x,y)/(y < 0,x \le 0),(x \le 0,x \ge 0),(x \ge 0,y > 0)\} \)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow the equation \({\left( {\frac{{\partial u}}{{\partial x}}} \right)^2} + {\left( {\frac{{\partial u}}{{\partial y}}} \right)^2} = {e^{ - 2s}}\left( {{{\left( {\frac{{\partial u}}{{\partial s}}} \right)}^2} + {{\left( {\frac{{\partial u}}{{\partial t}}} \right)}^2}} \right)\) if\(u = f(x,y)\), where \(x = {e^s}\cos t\) and \(y = {e^s}\sin t.\)
Use a computer graph of the function to explain why the limit does not exist.
\(\mathop {\lim }\limits_{(x,y) \to (0,0)} \frac{{x{y^3}}}{{{x^2} + {y^6}}}\)
Find the value of \(\frac{{\partial z}}{{\partial x}}\) and \(\frac{{\partial z}}{{\partial y}}\) using equation 7.
\(yz + x\ln y = {z^2}\)
Let \(F(x,y) = 1 + \sqrt {4 - {y^2}} \)
a) Evaluate F(3,1)
b) Find and sketch the domain of F
c) Find the range of F
Find the limit, if it exists, or show that the limit does not exist.
\(\mathop {lim}\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2} + {y^2}}}{{\sqrt {{x^2} + {y^2} + 1} - 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.