Chapter 11: Q66E (page 640)
if \(u = {e^{{a_1}{x_1} + }}^{{a_2}{x_2} + .... + {a_n}{x_n}}\) where\({a^2}_1 + a_2^2 + \ldots a_n^2 = 1\), show that
\(\frac{{{\gamma ^2}u}}{{\gamma x_1^2}} + \frac{{{\gamma ^2}u}}{{\gamma x_2^2}} + ...... + \frac{{{\gamma ^2}u}}{{\gamma x_n^2}} = u\)
Short Answer
We should know about partial differentiation to prove the problem.