Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that each of the following functions is a solution of the wave equation \({u_t} = {a^2}{u_{xx}}\)

  1. \(u = \sin \left( {kx} \right)\sin (axt)\)
  2. \(u = \frac{t}{{\left( {{a^2}{t^2} - {x^2}} \right)}}\)
  3. \(u = {\left( {x - at} \right)^6} + {(x + at)^6}\)
  4. \(u = \sin \left( {x - at} \right) = \ln (x + at)\)

Short Answer

Expert verified

The wave equation is a second order linear partial differential equation for the description of waves as they occur in classical physics as mechanical waved or electromagnetic waves.

Step by step solution

01

Double differentiation

\(u = \sin \left( {kx} \right)\sin (axt)\)

Then,

\(\begin{aligned}{l}{u_t} = ak\sin \left( {kx} \right)\cos x(axt)\\{u_t} = - {a^2}{k^2}\sin \left( {kx} \right)\sin x(axt)\\{u_x} = k\cos \left( {kx} \right)\sin (axt)\\{u_{xx}} = - {k^2}\sin \left( {kx} \right)\sin (axt)\end{aligned}\)

Now,\({u_{tt}} = - {a^2}{k^2}\sin \left( {kx} \right)\sin (axt)\)\( = {a^2}{u_{xx}}\)

Hence, given function (1) is a solution of \({u_t} = {a^2}{u_{xx}}\)

02

Double differentiation with repeat to “t”

Given \(u = \frac{t}{{\left( {{a^2}{t^2} - {x^2}} \right)}}\)

Then\({u_t} = \frac{t}{{\left( {{a^2}{t^2} - {x^2}} \right)}} - t{\left( {{a^2}{t^2} - {x^2}} \right)^{ - 2}}\left( {2{a^2}t} \right)\)

\({u_t} = \frac{{\left( {{a^2}{t^2} - {x^2}} \right) - 2{a^2}{t^2}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}}\)

\({u_t} = \frac{{ - \left( {{x^2} + {a^2}{t^2}} \right)}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}}\)

\({u_{tt}} = \frac{{ - 2{a^2}{t^2}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}} + \frac{{2\left( {{x^2} + {a^2}{t^2}} \right)(2{a^2}t)}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^3}}}\)

\({u_{tt}} = \frac{{ - 2{a^2}{t^2}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}} + \frac{{ - 2{a^4}{t^3} + 2{a^2} + {x^2} + 4{a^2}{x^2} + 4{a^4}{t^3}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^3}}}\)

\({u_{tt}} = - \frac{{2{a^2}t({a^2}{t^2} + 3{x^2})}}{{{{({a^2}{t^2} - {x^2})}^3}}}\)

03

Partial differentiating (2) equation

\({u_x} = \frac{{2tx}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}}\)

\({u_{xx}} = \frac{{2t}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^2}}} - \frac{{4tx( - 2x)}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^3}}}\)

\({u_{xx}} = \frac{{2{a^2}{t^3} - 2t{x^2} + t{x^2}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^3}}}\)

\({u_{xx}} = \frac{{2{a^2}{t^3} - 2t{x^2} + t{x^2}}}{{{{\left( {{a^2}{t^2} - {x^2}} \right)}^3}}}\)

\({u_{xx}} = - \frac{{2t({a^2}{t^2} + 3{x^2})}}{{{{({a^2}{t^2} - {x^2})}^3}}}\)

\({u_{tt}} = {a^2}\left( {\frac{{2t({a^2}{t^2} + 3{x^2})}}{{{{({a^2}{t^2} - {x^2})}^3}}}} \right)\)\( = {a^2}{u_{xx}}\)

Hence, the given function (2) is a solution of \({u_t} = {a^2}{u_{xx}}\)

04

 Step 4: Double differentiation with respect to‘t’

c) Given\(u = {\left( {x - at} \right)^6} + {(x + at)^6}\) (3)

Then,\({u_{}} = 6{\left( {x - at} \right)^5}( - a) + {(x + at)^5}(a)\)

\({u_t} = - 6a{\left( {x - at} \right)^5} + 6a{(x + at)^5}\)

\({u_t} = 30{a^2}{\left( {x - at} \right)^4} + 30{a^2}{(x + at)^4}\)

05

Double differentiation with respect to‘x’

\({u_x} = 6a{\left( {x - at} \right)^5} + 6{(x + at)^5}\)

\({u_{xx}} = 30{\left( {x - at} \right)^4} + 30{(x + at)^4}\)

\({u_{tt}} = {a^2}\left( {30{{\left( {x - at} \right)}^4} + 30{{(x + at)}^4}} \right)\)\( = {a^2}{u_{xx}}\)

Hence, the given solution (3) is a solution of \({u_t} = {a^2}{u_{xx}}\)

06

Compare Double differentiation:

D) Given\(u = \sin \left( {x - at} \right) = \ln (x + at)\) (4)

Then,\({u_t} = - a\cos (x - at) + \frac{a}{{x + at}}\)

\({u_{tt}} = - {a^2}\sin (x - at) - \frac{{{a^2}}}{{{{(x + at)}^2}}}\)

\({u_x} = \cos (x - at) + \frac{1}{{x + at}}\)

\({u_{xx}} = - \sin (x - at) - \frac{1}{{{{(x + at)}^3}}}\)

\({u_{tt}} = {a^2}\left( { - \sin (x - at) - \frac{1}{{{{(x + at)}^2}}}} \right)\)\( = {a^2}{u_{xx}}\)

Hence, the given function (4) is the solution of equation \({u_t} = {a^2}{u_{xx}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free